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8Natural Sciences, Paul Smith’s College, 7777 State Route 30, Paul Smiths, NY 12970, USA
9Large Lakes Observatory, University of Minnesota Duluth, 2205 E. 5th Street, Duluth, MN 55812, USA

MM, 0000-0002-7782-7503; AMM, 0000-0001-9648-2902; ND, 0000-0003-2349-0826;
JCS, 0000-0002-0817-2806; TCJ, 0000-0003-4630-6788; OS, 0000-0001-6598-1434

The frequent occurrence of adaptive radiations on oceanic islands and in lakes

is often attributed to ecological opportunity resulting from release from com-

petition where arrival order among lineages predicts which lineage radiates.

This priority effect occurs when the lineage that arrives first expands its niche

breadth and diversifies into a set of ecological specialists with associated

monopolization of the resources. Later-arriving species do not experience

ecological opportunity and do not radiate. While theoretical support and evi-

dence from microbial experiments for priority effects are strong, empirical

evidence in nature is difficult to obtain. Lake Victoria (LV) is home to an excep-

tional adaptive radiation of haplochromine cichlid fishes, where 20 trophic

guilds and several hundred species emerged in just 15 000 years, the age of

the modern lake that was preceded by a complete desiccation lasting several

thousand years. However, while about 50 other lineages of teleost fish also

have established populations in the lake, none of them has produced more

than two species and most of them did not speciate at all. Here, we test if

the ancestors of the haplochromine radiation indeed arrived prior to the

most competent potential competitors, ‘tilapias’ and cyprinids, both of

which have made rapid radiations in other African lakes. We assess LV sedi-

ment core intervals from just before the desiccation and just after refilling for

the presence of fossil fish teeth. We show that all three lineages were present

when modern LV began to fill with water. We conclude that the haplochro-

mines’ extraordinary radiation unfolded in the presence of potentially

competing lineages and cannot be attributed to a simple priority effect.

1. Introduction
A major challenge in evolutionary biology is to explain the enormous variation

in the rates at which new species arise and accumulate among lineages and

among geographical locations. Chance, contingency and ecological determinism

undoubtedly all play important roles, but which of them dominates when, and
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how they interact, are big open questions. The process of adap-

tive radiation whereby many new species with different

ecological functions emerge from an ancestral species in short

time has attracted much attention [1–3]. Ever since Simpson’s

1953 book [4], the concept of ecological opportunity has been

central in explaining adaptive radiation [5]. A species experi-

ences ecological opportunity when it finds itself in an

environment with a diversity of accessible resources that no

other species is competing for.

While intuitive in concept and quite well understood in

theory, ecological opportunity is hard to quantify empirically,

and many approaches are at least partly circular. Demon-

stration of resource competition in a given case requires

detailed evidence of niche overlap and resource limitation,

which is challenging to generate, especially for extended

periods of time. Circumstantial support for the importance of

competitive release from incumbent lineages can be inferred

from the observation that most known adaptive radiations

occur on oceanic islands and in isolated lakes [6]. Upon for-

mation, these island-like environments are often assumed to

have very simple biotic assemblages, such that early colonists

do not experience interspecific competition and can seize

ecological opportunities, monopolize them through adaptive

diversification and thereby gain an evolutionary head start.

Late-arriving species of a particular taxonomic group are

likely to be excluded from resources to which early colonizing

species and their descendants have already had time to adapt.

Typically, only one lineage per major taxonomic group radiates

on each island or lake, and this has been attributed to arrival

order and priority effects [7,8]. While theoretical support

is strong [8,9] and evidence from microbial experiments sup-

ports theoretical predictions [10], empirical evidence for an

importance of priority effects in nature is scarce and difficult

to obtain, as the circumstances in the early phases of well-

known adaptive radiations are rarely known [7]. Theory and

microbial evolution experiments suggest that evolutionary pri-

ority effects can be strong even when successive colonization

events are separated just by tens to hundreds of generations

[9,10]. Therefore, time-of-arrival data have to be resolved at a

fine scale to test the hypothesis.

Islands and lakes that host a radiation were often colonized

by several lineages in quick succession early in their history,

but this makes it difficult to resolve the arrival order using

phylogenetic methods. Consequently, this approach has only

rarely been applied successfully [11] and to systems where

successive colonization events are chronologically widely sep-

arated (e.g. [12]). Fossil data may also provide evidence of

colonization history; however, few systems have a sufficiently

rich fossil record and no case is known to us in which the pri-

ority effect was directly tested with fossils at a resolution better

than what can be achieved phylogenetically.

The haplochromine cichlid fish of Lake Victoria (LV)

represent the fastest known species radiation of any con-

temporary animals [13]. After several thousand years of

desiccation, including a long phase of complete desiccation

prior to 16 000 years before present (BP; i.e. before AD

1950; hereafter ka), LV refilled rapidly, starting approxi-

mately 15.2 [14,15] or 16.2 ka [16]. The several hundred

species of endemic cichlid fish, belonging to 22 morphologi-

cally distinct genera and a similar number of trophic guilds

appear to have evolved within the lake since its refilling,

necessitating an astonishing diversification rate [14,17–19].

This has aptly been likened to Simpsonian quantum
evolution, the origin of major new adaptive types in an extre-

mely short period of time [4,20]. The rapid diversification of

cichlid clades has been the subject of extensive study (e.g.

[13,21–23]), revealing that intrinsic properties such as sexu-

ally selected nuptial colouration [24], a highly adaptable

and/or plastic trophic apparatus [25,26] and the potential

to generate genetic variation through hybridization of even

distantly related lineages [27–29] are all probably implicated

in the evolutionary success of cichlids in general, and haplo-

chromines in particular. The environmental and biotic

conditions that allowed such remarkable diversification in

little time are of major interest to ecologists and evolutionary

biologists alike.

Spectacular adaptive radiations of cichlids took place in

some but not in all the large lakes of Africa, and in some

but by far not all the cichlid lineages. Environmental-

and lineage-specific factors explain some of this variation

[30,31], but they do not explain why typically only one of

several lineages with similar traits radiated in each lake.

The biotic conditions (i.e. the matrix of other species present

at the time radiations are initiated), while of major interest,

are largely unknown. Using comparative analyses of patterns

in phylogenetic trees, Wagner and colleagues found some

evidence for a negative effect of the presence of larger preda-

tors [30,32] and for negative effects of cichlid lineages on each

other [31,32] indicative of an inhibitory effect of the presence

of competitors. Specifically, Seehausen [32] observed that of

three lineages of cichlids with identical mating system and

similar opportunity for sexual selection, typically only one

radiated in any one lake, even though multiple lineages

have colonised and become established in many lakes [32].

Notably, these studies are based on the diversity and distri-

bution of the extant fauna but cannot determine whether

the ancestors of radiations were colonizing the new habitat

prior to, or simultaneously with, potentially competing taxa

that did not form radiations. Priority effects might explain

these very uneven rates of diversification among lineages

within each African Great Lake [1,2,5,10,33], but the relative

timing of colonizations that are not separated by thousands

of years is difficult to infer using phylogenetic methods

with their sometimes substantial margin of error [34]. East

African lakes nonetheless provide unique opportunities to

investigate the role priority effects and release from compe-

tition played in adaptive radiations. The lakes accumulate

sediment that incorporates fish remains (e.g. [35–37]), build-

ing a rich record of fossils - a rare situation among study

systems in diversification research. Although typically disar-

ticulated, fossil bones and especially teeth yield important

information about ecological adaptations and the taxonomic

composition of past communities.

To test the hypothesis that priority effects and (lack of)

competition from other lineages were essential in allowing

haplochromine cichlids to undergo their exceptional adaptive

radiation in LV, and curtail diversification in other fish

lineages, we gathered fish fossils from sediment layers depos-

ited at the very beginning of modern LV, between 16 and

15 ka. In addition, we also collected older fossils from sedi-

ments deposited in palaeolake Victoria, which were later

transformed to palaeosol, representing the final period of

palaeolake Victoria shortly before complete desiccation. In

total, we analysed 29 subsamples of three sediment cores,

taken at different deep-water, offshore sites in LV [14]

(figure 1a–d).
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Figure 1. (a) Bathymetric map of LV with coring sites indicated. (b) Sections, depth below lake floor, magnetic susceptibility and age model of core LV96_6A. One dated
sample (red) was considered to be an outlier (see Material and methods). (c) Sections, depth below lake floor, magnetic susceptibility and age model of core LV95_2A. One
dated sample (red) was considered to be an outlier (see Material and methods). Note that the age model interpolation estimates an older age for the 680 cm depth below
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2. Results
In total, we recovered 290 fossil fish teeth from all three cores

analysed. The density of teeth across core intervals was

uneven and appears to be dependent on lithofascies. The

core record shows a thick desiccation surface consisting of a

hard, crumbly palaeosol, as a result of a major desiccation

event that ended approximately 16 ka (figure 1). This palaeosol

layer is overlain by fine-grained, wet lake sediment, indicating

a first lake high stand. This wet phase seems to have been brief,

on the order of less than 1000 years, and deep-water conditions

were soon interrupted by a low stand with swamp-like

conditions, as indicated by a second desiccation surface,

approximately 14–15 ka (figure 1e). This layer does not show

indications of soil development, but rather consists of peat,

suggesting the presence of an extensive cattail (Typha spp.)

swamp. The presence of desiccation intervals and the intermit-

tent high stand can also be seen in the magnetic susceptibility

profiles, as desiccation forms and concentrates magnetic min-

erals (figure 1b–d) [39]. Following the second low stand,

modern LV attained permanent open water conditions. We

consider the fossil fauna of the first high-stand phase in our

data as representing the earliest possible snapshot of the
newly assembling community of colonizing fish lineages in

modern LV.

We observed that intervals close to desiccation surfaces

often but not always contained higher densities of fossils than

intervals of unaltered, uniform mud deposited during

fully lacustrine conditions in the modern lake (figure 1e and

table 1). The highest fossil density was found in the interval

20–22 cm in section 8 of core LV95_2A, from the first high

stand, with 47 teeth per cm3 sediment (figure 1e, panel 2). Inter-

vals further up-core (i.e. younger) that were sampled in cores

LV96_6A and LV95_1A were largely devoid of fossil fish teeth

(figure 1e and table 1), with the exception of one interval in

core LV96_6A that was situated directly above the last lake-

level low stand and contained several teeth. Four intervals

from the palaeosol of cores LV96_6A and LV95_1A also yielded

numerous fossils, which represent the palaeolake fauna.

We recovered teeth from all three major fish taxa, namely

the cichlid tribes Haplochromini and Oreochromini, and the

family Cyprinidae (figure 2), from the palaeolake and,

crucially, also from the earliest refilling phase (the intermit-

tently high lake level). The sediments deposited when the

lake transitioned from its last lowstand with swamp-like

conditions to the modern lake with persistent, widespread

http://rspb.royalsocietypublishing.org/
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open-water conditions also yielded a small number of fossils

(figure 1e). The composition varied widely between intervals,

with more cyprinid teeth, in both absolute and relative terms,

in intervals from the palaeolake. Haplochromini teeth are rela-

tively numerous in all intervals. Oreochromini teeth are present

in the palaeolake and in the earliest refilling phase but are not

found among the 16 teeth from final return to open water con-

ditions. A few teeth from the earliest refilling phase and the

final return to open water conditions belong to other taxonomic

groups (figure 1e, ‘other’), such as Synodontis catfish.

Among the intervals from palaeolake sediment, taxon

composition differed more strongly between cores than

between intervals within cores, with LV96_6A containing

proportionately very few cyprinid teeth (3%), whereas

LV95_1A contained many (28%), a pattern that was reversed

for Oreochromini teeth (36% and 3%, respectively).

3. Discussion
The fish fauna of modern LV, prior to the invasion of Nile

perch, was dominated by haplochromine and oreochromine

cichlid fish and carp-like fish (cyprinids) in terms of biomass

[40]. Whereas haplochromines have radiated into hundreds

of endemic species [41], there is no evidence for in situ specia-

tion in Oreochromis and very little, if any, in cyprinids, or

indeed in catfish or any other fish taxa in the lake [19]. Our

analysis of 290 fossil fish teeth from three offshore cores

clearly shows that all three dominant taxa were present in

the nascent modern LV when it first filled with water. This

implies that the large radiation of haplochromine cichlids

cannot be attributed to the fortune of an early arrival into

an environment free of presumed competitors.

Ancestral-type haplochromines, as can be found in streams

and swamps in the LV basin even today, are diet generalists that
feed predominantly on bottom-dwelling invertebrates [20].

Representatives of the other major taxa are ecologically more

strongly specialized. Cichlids of the genus Oreochromis are

physiologically and morphologically highly specialized phyto-

plankton and detritus feeders, and their presence could have

restricted access to such niches for haplochromines. Yet more

than 20 species of phytoplankton- and detritus-eating haplo-

chromines, and at least 30 species of benthic algivores, have

evolved [42,43]. The presence of cyprinids, probably including

the silver cyprinid (Rastrineobola argentea) (figure 2), could have

constricted ecological opportunity for haplochromines through

interspecific competition for zooplankton in the pelagic zone,

yet at least 15 species of pelagic zooplankton feeding haplochro-

mines have evolved. Finally, the presence of catfish, including

the molluscivorous Synodontis, did not prevent the evolution

of a wide range of mollusc-eating haplochromines.

Interestingly, these other taxa did undergo rapid radiations

in other African lakes in the absence of haplochromines:

cyprinids radiated into some 20 species within 15 000 years

in Lake Tana, Ethiopia [44], and also radiated in Lake Lanao,

Philippines [45]; Oreochromis radiated into three species in a

few thousand years in Lake Natron, Tanzania [46]; and Syno-
dontis catfish radiated into 13 species in Lake Tanganyika,

albeit over a much longer timescale [47,48]. Despite their

potential to commence evolutionary radiations, and despite

colonization simultaneously with haplochromines, none of

these other groups diversified in modern LV.

Future research should address the possibility that haplo-

chromines differ from the other taxa in evolvability and/or

the propensity to speciate. It is possible that diversification in

the other taxa was curtailed by competition with haplochro-

mines, and this could be interpreted as an evolutionary

priority effect, but one due to heterogeneity in rates of evol-

ution rather than the fortunes of arrival order. Perhaps a
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Zü
ric

h
83

16
0.1

.1

4
37

7
12

29
0

18
0

0
ye

s
th

is
stu

dy
15

02
4

13
78

6
ch

ar
co

al
Un

ive
rsi

ty
of

Be
rn

81
43

9.1
.1

4
39

6
13

79
0

14
0

0
ye

s
th

is
stu

dy
17

10
1

16
25

9
w

oo
d

Un
ive

rsi
ty

of
Be

rn
81

44
0.1

.1

4
39

6
14

35
0

24
0

0
ye

s
th

is
stu

dy
18

04
7

16
80

7
ch

ar
co

al
Un

ive
rsi

ty
of

Be
rn

81
44

1.1
.1

LV
95

_1
A

1
0

2
10

00
1

0
ye

s
Be

rk
e

et
al.

[3
8]

10
01

99
9

V9
5-

1P

2
10

1.
5

30
60

35
0

ye
s

Be
rk

e
et

al.
[3

8]
33

59
31

79

5
47

3
10

00
0

40
0

ye
s

Be
rk

e
et

al.
[3

8]
11

70
0

11
27

5

7a
65

0
14

45
0

65
0

ye
s

Be
rk

e
et

al.
[3

8]
17

85
8

17
41

9

7b
71

4
13

60
0

55
0

ye
s

Be
rk

e
et

al.
[3

8]
16

62
1

16
19

1

7a
67

4
10

61
2

96
0

ye
s

th
is

stu
dy

12
73

0
12

23
8

ch
ar

co
al

ET
H

Zü
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combination of high dispersal capability (as evidenced by the

early arrival in young LV), ecological versatility and intrinsic

mechanisms to generate reproductive isolation and form

genetically isolated populations in proximity is the basis for

the haplochromines’ evolutionary success (see, e.g. [49]).

We observed very low densities of fish remains in the

younger core intervals representing the later stages of the

modern lake. This could be a consequence of the position

of coring sites. All three cores were taken in deep offshore

locations that provide less disturbed sedimentation conditions

and better stratigraphic resolution than shallow-water settings.

However, most of the fish biomass in LV today, as in most great

lakes of the world [50], is concentrated in the littoral zone and

the input of fossils is probably higher in nearshore locations.

The high fish fossil density at the base of the lake sediment

sequence could be a consequence of the position of the littoral

zone being located close to the coring sites only shortly before

desiccations and even more briefly after the start of rapid refill-

ing. Slowed sedimentation during the transgressive phase could

also lead to higher concentration of fish remains, even at the

same fossil influx rate, forming a transgressive lag deposit rich

in fish fossils. Additionally, at shallower depth, wind-induced

water movement keeps fine particles in suspension, leading to

a higher concentration of larger grain sizes in the sediment. At

deep sites, also fine particles settle and thereby further dilute

fish teeth fossils [51]. While some taphonomic biases can

affect fossil density and species composition [52], this is very

unlikely to have had an effect on the findings presented here.

The stark delimitation of palaeolake and modern lake sedi-

ments by a crumbled palaeosol associated with the extended

period of complete desiccation facilitates the assignment of

core intervals to the palaeolake versus the modern lake.
4. Conclusion
This study highlights the value of fossil assemblages from

environments that hosted early stages of extant species radi-

ations for testing classical hypotheses about the role of biotic

interactions during adaptive radiation and evolutionary

community assembly. Lake sediments provide an especially

good record as it is possible to collect sufficient numbers of

fossils and place them into a chronological order using the

often highly resolved stratigraphic layering of the sediment

[53]. Leveraging this approach allowed us to investigate the

circumstances during the initial phase of one of the largest

recent adaptive radiations on Earth and to directly test a

long-standing hypothesis for its evolutionary success. Release

from competitors cannot explain why a benthic insectivorous

cichlid ancestor radiated into niches as different and difficult

as pelagic zooplankton feeding, herbivory and snail eating.

Other taxa that were already specialized for each of these

niches were present from the very beginnings of the lake. In

the haplochromine radiation, these adaptations, and probably

others too, evolved in the presence of already well-adapted

specialists from other lineages.
5. Material and methods
We subsampled 29 intervals from three sediment cores from LV,

which were taken as part of the International Decade of East

African Lakes (IDEAL) project in 1995 and 1996 (figure 1 and

table 1). Cores LV95_1A and LV95_2A have been used in several

http://rspb.royalsocietypublishing.org/
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previous studies and are well described [14–16,38,54–57]. Core

LV96_6A was opened and described for this study. Samples

were wet-sieved at a 100 mm mesh size using demineralized

water, and remaining fractions were examined using a Zeiss

Stemi 508 stereomicroscope. Fish teeth were photographed and

identified to family or tribus level using reference collections, or

photographs thereof, at the EAWAG, the University of Alberta,

and the Canadian Museum of Nature in Ottawa. Teeth of haplo-

chromines are uni-, bi- or tricuspid, comparatively short and can

derive from either oral jaws or pharyngeal jaws, with each jaw

apparatus bearing distinctive tooth shapes (figure 2). Oreochro-

mine teeth are less varied in shape and typically more elongate

than haplochromine teeth. Both oral and pharyngeal jaws bear

many more teeth than in any LV haplochromine. Cyprinids do

not have oral teeth, but a small number of rather robust pharyngeal

teeth, often with a distinctive curvature and two parallel rows of

minute protuberances towards the cusp.

For the construction of age models, we used previously pub-

lished dates from cores LV95_1A [38,58] and LV95_2A [55], with

the addition of two dates for LV95_1A and one for LV95_2A gen-

erated in this study. The age model for core LV96_6A was based on

seven dates generated in this study. The sediment surface was

assumed to be contemporary at the time of sampling (i.e. 245

calendar years BP). Core LV95_1A does not include the sediment

surface because the corer over-penetrated. The top of the core is

assumed to be 1 ka [38]. Materials used for dating in this study

were fish fossil fragments in one case, a wood fragment in another

case and charcoal pieces in all other cases (table 2 for details). Some

previously published dates were generated from organic carbon

extracted from bulk sediment from core LV95_2A and have been

assumed to show a reservoir effect, leading to older radiocarbon

dates than the actual ages of samples. In some previous studies,

the respective radiocarbon dates were corrected by subtracting

330 [16], 500 [55] or 600 years [56]. Here, we subtracted 600 years

from the respective dates from core LV95_2A (table 2).

Our additional radiocarbon dates generated in this study

for cores LV95_1A and LV95_2A in a few cases differed widely

from the age model constructed from available dates. This might

have resulted from contamination with younger carbon during

sampling or through fungal growth on these much-handled

cores [18]. Contamination was less likely to have been introduced

this way for core LV96_6A, as it was opened for this study more

than 20 years after the other cores. The single outlier in this core

was measured from fossil fragments that had been stored in
ethanol. Despite drying samples at 608C for several hours, some

ethanol might not have evaporated completely and might have

introduced modern carbon into that sample. Outliers were

excluded from the calculation of age models.

We used 14C dates, their associated errors, in some cases a

correction for a reservoir effect and age estimates of the cores’

top layer to construct age-depth models with the R function

‘clam’ v. 2.2 [59], second-order polynomial regression and the

IntCal13 calibration curve [60].

Magnetic susceptibility data for cores LV95_1A and LV95_2A

had previously been published [61] and are available from NOAA

(see Data accessibility). Data for core LV96_6A (sections 2–5) were

generated for this study (electronic supplementary material, table

S1).
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