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predict adaptive radiation 
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1. PHYLOGENETIC ANALYSES 
1.1 Taxon sampling and sequencing 
We used tools in the GenBank browser PhyloTA1 to gather sequence 
data for African cichlid taxa for the nine genes used in phylogenetic 
reconstruction (see Supplementary Table 1). As a check on the 
GenBank sequence data, we built single-gene trees and excluded from 
the dataset sequences where problems in species identification were 
apparent. We included sequences from all African cichlid taxa with 
unique species names, and in most cases excluded taxa not identified 
to species. We assembled the full genetic dataset with the help of 
functions in the R packages APE2 and Phyloch3, and aligned the 
dataset with MAFFT4.  

Species sampled and GenBank numbers associated with gene 
sequences used in phylogenetic analyses are listed in Supplementary 
Table 1.  

DNA was extracted from fin clips or muscle tissue using a 
standard phenol-chloroform extraction procedure. Two mitochondrial 
regions, the control region and NADH2 were amplified. PCR 
amplification of products, purification of PCR products, and 
sequencing of control region followed the protocol described in Joyce 
et al.5. The entire mitochondrial control region was amplified using 
forward primer  

HAPThr-2+4F 5’-CCTACTCCCAAAGCTAGGATC-3’  
and reverse primer  

FISH12s 5’- TGCGGAGACTTGCATGTGTAAG -3’.  
PCR products were cleaned using exonuclease and shrimp alkaline 
phosphatase, and a combination of the amplification primers and two 
internal primers, a forward primer  

Dloopint 5’-AGCCCACCATCAGTTGATT-3’  
and reverse primer  
  HapDloop 5’-GGTTTGCAGGAGTCTTAGAG-3’.  
These primers were used for cycle sequencing in both directions using 
DTCS quickstart (Beckman Coulter) according to the manufacturer’s 
instructions, adding 1M betaine to the sequencing reaction. The 
NADH2 gene was amplified with primers GLN forward  

(5'-CTACCTGAAGAGATCAAAAC-3')  
and ASN reverse  

(5'-CGCGTTTAGCTGTTAACTAA-3').  
The PCR products were purified and sequenced in both directions as 
described above using the two amplification primers and two internal 
primers ND2.1int  

(5'-ACAGGTCAATGAGAAATTCAACAA-3')  
and reverse primer ND2.4int  

(5'-AAGCCCTTGTTTGGTTAGTTCT-3')  
to obtain the entire segment (1047bp) of the NADH2 gene. All 
sequences were resolved using a CEQ Automated Capillary Sequencer 
(Beckman Coulter). 
 
1.2 Phylogenetic analyses  
We used RAxML for phylogenetic analyses6. We partitioned the 
dataset by gene, using a GTR+gamma model of sequence evolution 
for each gene partition. We completed a full maximum likelihood 
search and 100 bootstrap replicates of RAxML’s rapid bootstrap 
algorithm7. To account for uncertainty in branch length estimates as 
well as topology, we estimated branch lengths for each bootstrap 
replicate topology in RAxML, giving a total of 101 trees with 
topology and branch length estimates. 

To ultrametricize and time-calibrate this set of trees, we used 
PATHd88. We used four geological dates to time-calibrate the trees 
(see Supplementary Figure 1). Two of these dates were associated 

with the breakup of Gondwana: the African-Madagascar split (121-
165 million years ago), placed at the node representing the most recent 
common ancestor of mainland and Madagascan (Ptychochromine) 
cichlids; the Madagascar-India split (63-88 million years ago), placed 
at the node representing the most recent common ancestor of Indian 
and Madagascan Etropline cichlids9. We also included the age of the 
earliest known fossil Oreochromis (6 million years; 10), placed at the 
node representing the common ancestor of Oreochromis and 
Sarotherodon (these genera cannot be distinguished based on 
fossilized characters, thus this placement is conservative). 
Additionally, we used the age of Lake Nabugabo (5000 years9) as a 
recent calibration point. Because cichlids from Lake Nabugabo are not 
reciprocally monophyletic, we applied this divergence time to the node 
representing each Nabugabo species and its most recent common 
ancestor in Lake Victoria, repeating this procedure for each of the four 
Nabugabo species included in the tree, and replicating this procedure 
over the set of 101 trees. We then drew 95% confidence intervals on 
node ages from the distribution of branching times estimated from 
these sets of calibrated ultrametric trees.  

The best maximum likelihood topology from a full RAxML 
search, with bootstrap values from 100 rounds of bootstrapping, is 
provided in Supplementary Figure 1. To incorporate our phylogeny 
into regression analyses incorporating the effects of phylogeny, we 
trimmed the single best ML tree to include only lineages that occur in 
lakes, and a single taxon for each lake in which cichlids have 
diversified. Taxa included in the trimmed tree (corresponding to those 
in Figure 1a), as well as confidence intervals for the time-calibrated 
tree, are given in Supplementary Figure 2.  

For lineages present in multiple lakes, we added a tip to the tree 
for each instance where the lineage is found in a unique lake, such that 
each lineage found in multiple lakes is represented as a polytomy with 
a tip corresponding to each lake where it is present. We set branch 
lengths on these added tips to have a total length that matched that 
expected under a pure birth model. To do this, we follow Nee11 in 
considering the branching times of a phylogeny that includes n 
species. Each time interval ti represents the waiting time between 
successive speciation events on the tree. Under a pure-birth model 
with birth rate b, these waiting times are all drawn from exponential 
distributions with rate parameters that depend on the number of extant 
species in the tree at that particular time. Total tree depth (T) is the 
sum of these intervals: 
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Solving for b in (1) and substituting into (2) we have: 
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2. DIVERSIFICATION STATE, TRAIT AND ENVIRONMENTAL DATA 
2.1 Data included and source information 
Lake physical and environmental can be found in the Dryad data 
repository (http://dx.doi.org/10.5061/dryad.5g6312br). Lake surface 
areas that were not reported in the literature were measured using 
distance-calibrated Google Earth satellite images and the software 
ImageJ12. Net solar radiation is the difference between the influx of 
solar radiation and the reflectance of heat energy back into space. We 
used the average of monthly values from 2010, obtained from the 
NASA Langley Research Center Atmospheric Science Data Center. 

We obtained information about the distribution of large predatory 
fish of the genera Lates, Hydrocynus and Hepsetus from FishBase13. 
Trait data have been deposited in the Dryad data repository 
(http://dx.doi.org/10.5061/dryad.5g6312br). 
 
2.2 Time for diversification 
We calculated “time for diversification” for lineages using either the 
midpoint of geological age estimates for the lake (either most recent 
desiccation or basin age, if no evidence for desiccation exists) or the 
median stem age of the group estimated from our calibrated molecular 
phylogenies. If both ages were available we used the geological age of 
the lake, with the exception of lakes where radiating or colonizing 
groups differ substantially in age (e.g. Lake Tanganyika, Lake 
Malawi). Previous work has used similar approaches, combining 
geological and molecular genetic information to assess relative tempos 
of speciation14,15. The times for diversification that we inferred for all 
lineages in the dataset, and reference information for geologically-
based dates, are archived in the Dryad data repository 
(http://dx.doi.org/10.5061/dryad.5g6312br). 

Because of potential error arising from combining molecular 
phylogenetic estimates of clade age with geologic dates, we also did 
analyses using only geologically-based lake ages (see section 4 below 
and Supplementary Tables 3 and 4). The results of these analyses are 
qualitatively identical to those using time for diversification.  
 
2.3 Diversification “thresholds” 
We coded each lineage in each lake as one of two diversification states 
– “diversifying” or “nondiversifying” – using 2 different thresholds to 
identify diversifying lineages. At the lowest threshold, we identified 
any lineage that had undergone at least one intralacustrine speciation 
event. Under this criterion, any lineage that had at least one endemic 
species in a lake co-occurring with its sister taxon (either a widespread 
species or a lake endemic itself) would be coded as diversifying. 
Single endemic species not co-occurring with a sister taxon were not 
coded as diversifying. As an additional test for identifying multi-
species radiations, we coded lineages as diversifying only if they had 
produced at least 5 endemic species within a given lake.  
 
2.4. Treating radiation as a binary variable 
In this study, we focus on explaining the presence and absence of 
diversification, not the species richness of diversifying lineages. There 
are two major reasons we made the decision to treat the data this way: 
1. We here ask if there are lineage-specific or environmental 
properties that promote intralacustrine diversification. This is a 
different question than asking what determines the species richness of 
diversifying lineages. 2. Because most lineages have colonized lakes 
and have not subsequently diversified, the species richness dataset is 
highly skewed towards 0-values; the response variable therefore has a 
strongly zero-skewed distribution. Therefore, the binary framework is 
more analytically appropriate for the dataset and the question we seek 
to answer. However, see section 5.3 below for additional analyses that 
treat both our primary question (binary “radiation-or-not”) and species 
richness.   
 

3. CORRELATION BETWEEN PREDICTOR VARIABLES  
We checked for collinearity between predictor variables prior to 
including variables together in multiple regression models. We 
calculated Pearson correlation coefficients (r2) for all pairs of 
continuous predictor variables (see Supplementary Figure 3). Among 
continuous predictor variables, lake depth and time for diversification 

were strongly positively correlated (r2 = 0.77), and latitude and 
environmental energy were strongly negatively correlated (r2 = -0.82).  
 The collinearity between lake depth and time for diversification is 
not unexpected, as deeper lakes are generally older because they are 
less sensitive to climate-driven desiccation. Greater depth could 
influence diversification by increasing temporal lake stability, and/or 
through increased habitat dimensionality. To examine the relative 
explanatory power of depth versus time, we analyzed a large subset of 
the data, excluding lakes deeper than 150 meters, and thereby 
substantially reducing collinearity between depth and time (r2 = 0.25). 
We then compared models incorporating time, depth, and depth + time 
as predictors of diversification state. We find that depth alone predicts 
diversification better than does time alone at diversification threshold 
1 (depth alone vs time alone: ∆AIC 2.996; vs depth + time: ∆AIC 
1.696) and at diversification threshold 5 (depth alone vs time alone: 
∆AIC 1.308; vs depth + time: ∆AIC 0.541). We therefore included 
depth alone in multiple regression models presented in the main text. 
We additionally did multiple regression analyses including time and 
excluding depth, and as predicted for highly correlated predictor 
variables, time behaves qualitatively identically to depth in these 
models (results not shown).  

Because of high collinearity between energy (measured as net 
radiation) and latitude (r2 = -0.82), we included the residuals of the 
linear regression of latitude as a function of net radiation, instead of 
raw latitude, in multiple regression models. This approach allowed us 
to ask whether variation in latitude influences cichlid diversification 
beyond the effects of available energy. The residuals of latitude were 
not strong predictors of diversification in any model set in multiple 
regression analyses, and excluding them as a predictor variable 
produced qualitatively identical results.  

For binary predictor variables, we used the r2 equivalent suggested 
by Menard16, r2

L, as an assessment of collinearity. This metric is based 
on the likelihood of the model with only the intercept (LO) relative to 
the model with the predictor variables included (LM), where  
 

r2
L = 1 -  ln(LO)/ln(LM). 

 
We removed one variable from each pair of predictor variables 

with r2 (or r2
L) of greater than 0.7 after testing models including 

variables with correlations higher than this value proved to cause 
analytical problems (inflations of standard error in parameter 
estimation, a diagnostic of collinearity problems in logistic 
regression17). Supplementary Table 2 provides r2

L for all pairs of 
binary predictor variables. Mouthbrooding and polygamous mating 
systems were the only pair of variables with r2

L greater than 0.6, so we 
removed mouthbrooding from the multiple regression models shown 
in the main text.  
 

4. SINGLE PREDICTOR VARIABLE ANALYSES 
We evaluated the relationships between single predictor variables and 
diversification state using phylogenetic logistic regression18 (see 
Methods).  
Because Lake Tanganyika is an outlier in terms of depth and age (it is 
more than twice as old and deep as any other lake in the dataset), we 
ran models both with and without lineages present in that lake. At both 
thresholds used to identify diversifying lineages, the strongest and 
most consistent associations with radiation were for lake depth, lake 
age, and time for diversification (see Supplementary Tables 3 and 4).  

Ives and Garland’s18 method infers the parameter a, a measure of 
phylogenetic signal in the regression, as part of the phylogenetic 
logistic regression procedure, and uses this inferred measure of 
phylogenetic signal to modulate the strength of the phylogenetic term 
in the regression parameter estimation. The parameter a is defined 
such that values of -4 or less are considered to have negligible 
phylogenetic signal, and values greater than 1 indicate strong 
phylogenetic signal. Inferred a values for the regression of single 
predictor variables on radiation state are given in Supplementary 
Tables 6 and 7. No inferred a values exceed 0, indicating that no 
regressions have very strong phylogenetic signal, but strength of 
phylogenetic signal varies among predictor variables, and generally is 
higher in regressions of traits than it is in regressions of environmental 
variables. Note that the phylogenetic signal for the regression of these 
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variables on radiation state may differ substantially from phylogenetic 
signal in each variable alone. 

At the lower diversification threshold (see Supplementary Table 
3), both time for diversification and lake age are strong positive 
predictors of diversification both with and without Lake Tanganyika 
included in the dataset. Among extrinsic factors, increased lake depth 
and the absence of predators are significant predictors of radiation 
both with and without Lake Tanganyika. With taxa from Lake 
Tanganyika excluded, there are significant negative relationships with 
lake surface area and with latitude. Among intrinsic traits, sexual 
dichromatism is a significant predictor of radiation both with and 
without taxa from Lake Tanganyika included. Mouthbrooding is a 
significant predictor of radiation for the complete dataset, and both 
generalized and haplochromine-type egg dummies are significant 
predictors of radiation when taxa from Lake Tanganyika are excluded.  

At the higher diversification threshold, (Supplementary Table 4), 
lake age and time for diversification are again strongly associated with 
radiation both with and without taxa from Lake Tanganyika included. 
Lake depth is also a strong predictor of radiation both with and 
without taxa from Lake Tanganyika. Increased energy, and decreased 
latitude, are significantly associated with radiation for the whole 
dataset, but are not significant predictors with taxa from Lake 
Tanganyika excluded. Mouthbrooding is a significant predictor of 
radiation for the complete dataset only, and the presence of egg 
dummies (both generalized and haplochromine-type) and sexual 
dichromatism are significant predictors of radiation with taxa from 
Lake Tanganyika excluded.  
 

5. MULTIPLE REGRESSION ANALYSES 
5.1 Model Averaging Procedure 
To assess the impact of predictor variables on the fit of multiple 
regression models, we used an AICc-based model averaging approach 
following Burnham and Anderson19 and Kisel and Barraclough20. To 
do this, we fitted logistic regression models in RR Development Core 
21, using the function glm(), that included all possible additive models 
given our set of predictor variables. We calculated the Akaike weight 
of each model by first calculating relative likelihoods for each model 
as exp(-0.5*AICc). The Akaike weight equals the relative likelihood 
divided by the sum of the relative likelihoods for all models. We then 
calculated the relative importance (RI) for each predictor variable, as 
the sum of relative Akaike weights for models in which they appear. 
RI values scale from 0 to 1, where a variable with a score of 0 is 
associated with very low Akaike weights and 1 is consistently 
associated with high weights. We also calculated model-averaged 
estimates of regression parameters and standard error values, 
calculated as the sum of the parameter estimates for each model 
including that predictor, multiplied by the relative Akaike weight of 
each of those models.    

As an additional test of the robustness of our multiple regression 
results, we conducted a cross-validation test. We took 500 random 
draws of a subset of the lineages in the full dataset (75% of the total) 
and conducted the model averaging procedure as described above on 
these data subsets.  
 
5.2 Multiple regression results 
The full multiple regression model results, which are summarized in 
Figure 2 in the main text, are given in Supplementary Tables 5 and 6. 
Results are concordant across diversification thresholds. Relative 
importance values decrease for the higher diversification threshold. 
This is expected, as the number of instances of observed 
diversification decreases with increased threshold, and thus the power 
to observe significant associations decreases. The top predictor 
variables are consistent across thresholds, with one exception. At 
threshold 5, lake area is no longer a significant predictor of 
diversification (for thresholds 1 it is a strong negative predictor of 
diversification). This indicates that the negative association between 
lake area and diversification is driven by very small radiations (< 5 
species) in very small lakes.  

One possibility for the negative association between lake area and 
diversification that we discuss in the main text is ascertainment bias. 
While data on cichlid species presence is generally present for all large 
lakes of Africa, data on cichlid species presence in very small lakes is 

rare. Small lakes included in the dataset are frequently those known 
for their endemic cichlids (e.g. Cameroonian crater lakes; Guinas Sink 
Hole). Furthermore, although our results demonstrate that the 
occurrence of intralacustrine speciation is not limited by lake area (see 
main text), species richness in cichlid radiations is limited by lake area 
(see Seehausen22, Wagner et al. in prep). Therefore, if the small lakes 
included in the dataset disproportionately represent cases of radiation 
(more so than larger lakes), and small lakes are constrained in species 
richness of their radiations (by virtue of their area), the significant 
negative area-diversification relationship would be expected to 
disappear as species richness threshold increases. This is what we 
observe.  

The cross-validation test produced average relative importance 
values for all variables that are concordant with values for the full 
dataset (Supplementary Figure 4; compare to Figure 2a).  
 
5.3 Hurdle poisson regression analysis 

As a further test of the robustness of the results of our logistic 
regression modeling approach, we used hurdle Poisson regression 
implemented in the R package MCMCglmm 23,24. Hurdle Poisson 
regression models two latent variables associated with the response: 1) 
the probability that the response is zero or not, and 2) the probability 
of the response modeled as a Poisson distribution without the observed 
zero-values. Our response variable for these analyses is the number of 
speciation events within each colonizing lineage, instead of these data 
transformed to binary (e.g. “radiating-or-not”) as we have treated it 
elsewhere in the paper. We use a hurdle Poisson model for two 
reasons. First, our response variable is heavily zero-inflated; and 
second, we were specifically interested in investigating the presence of 
radiation separately from the species richness of those radiations. 

MCMCglmm takes a Bayesian approach to fitting general linear 
models that are analytically intractable using traditional likelihood 
approaches. An additional advantage for comparative biologists is that 
MCMCglmm can account for phylogeny by treating the phylogenetic 
variance covariance matrix as a random effect in the regression model 
24. To use this approach, we drew 100 trees randomly from our set of 
bootstrap replicate trees and replicated the analyses on each of these 
100 trees. Because the method requires fully resolved trees, we 
randomly resolved polytomies and replaced zero-length branches with 
near-zero length branches (0.000001).  

We fit multivariate models including variables from the reduced 
models also used in phylogenetic logistic regression analyses 
(variables surface area, depth, energy, elevation, haplochromine egg 
dummies, and sexual dichromatism). Fixed effects included additive 
terms for both binary and Poisson effects for each of these predictor 
variables. In addition to including phylogeny as a random effect, we 
included lake identity as a random effect, to account for potential 
autocorrelation in lake identity due to the presence of multiple lineages 
in the same lake.  

We used priors with an inverse Wishart distribution with nu = 
0.002, which is equivalent to an inverse gamma distribution with 
shape-scale equal to 0.001. We fixed the residual variance for the 
binary process portion of the model, as this variance is not estimated 
in the regression. Our prior specification therefore took the form:  
prior = list (R = list (V=diag(2),n = 0.002, fix=2), G = list (G1 = list ( 
V = diag(2), n = 0.002),(G2 = list ( V = diag(2), n = 0.002)))) 

Where R corresponds to the prior matrix associated with the residual 
variance, and G corresponds to the matrices associated with the 
random effects.  

We assessed convergence of the model through inspection of plots 
of the model deviance through time, and set the burn-in after a clear 
plateau of deviance values. We assessed autocorrelation in parameter 
values through the run with plots of parameter estimates through time 
and optimized sampling of the MCMC chain to minimize 
autocorrelation. We ran the model such that effective sample sizes of 
all parameter estimates exceeded 100. To optimize all of the above 
conditions, we ran the analysis on each replicate tree for 100 million 
generations, with 2.5 million generations of burn-in and sampling the 
chain every 2000 generations. For examples of run convergence 
diagnostics, see Supplementary Figure 5. 

Results from the binary portion of the hurdle Poisson regression 
analysis were concordant with the results from the logistic regression 



SUPPLEMENTARY INFORMATION

4  |  W W W. N A T U R E . C O M / N A T U R E

RESEARCH

www.nature.com/nature 

analyses for the full dataset and also with data from Lake Tanganyika 
excluded. Lake depth, lake surface area, and sexual dichromatism 
were strongly significant predictors of diversification in the reduced 
models we tested; these three variables are also the top-performers in 
logistic regression both with and without Lake Tanganyika 
(Supplementary Figure 6). When data from Lake Tanganyika is 
excluded, depth remains a strong predictor of radiation, but energy 
also becomes a predictor of radiation (Supplementary Figure 6b). The 
Poisson portion of the hurdle regression did not identify any of the 
tested variables as significant predictors of species richness in 
radiating lineages, with or without data from Lake Tanganyika. That 
is, this analysis showed that using this approach, our predictor 
variables can predict whether lineages radiate or not, but not the 
number of species that evolve in these radiations.  
 
5.4. Interaction effects 
Our main results show significant additive effects between 
environmental variables and lineage-specific traits in predicting 
cichlid radiation. We were interested in further testing whether there is 
evidence for non-additive interaction effects between extrinsic and 
intrinsic variables. We tested for this in two ways:  
 
1) We tested for interactions between two pairs of variables: sexual 

dichromatism and lake depth, and sexual dichromatism and lake 
surface area, in a Poisson hurdle model including those three 
variables. We chose these three variables because they were the 
significant predictors in our prior hurdle Poisson analyses (see 
section 5.3 above). We estimated regression parameters for each 
variable alone and for the two interactions described above, 
estimating effects for the binary portion of the model (as our 
previous tests showed no evidence for significant effects in the 
Poisson portion of the hurdle model; Section 5.3 above). We ran 
the analysis on the single best ML tree, for 10 million generations 
with a burn-in of 500,000 generations. This model gave evidence 
for a significant interaction term between lake depth and sexual 
dichromatism (p = 0.04), but no significant effects for the 
interaction of dichromatism and lake surface area. As expected, 
the main additive terms (sexual dichromatism, lake depth, and 
lake surface area) were all significant predictors of radiation.  

2)  We tested for an interaction between sexual dichromatism and 
lake depth in a hurdle Poisson model including those two 
variables alone plus their interaction. We again only estimated 
parameters for the binary portion of the model, and used the run 
parameters described above. The results of this model did not 
provide evidence for a significant depth-sexual dichromatism 
interaction effect (p = 0.25), but depth and dichromatism were 
each significant predictors of radiation.  

These analyses leave open the possibility that there is a weak 
interaction effect between lake depth and sexual dichromatism in 
addition to the clear additive effects of these variables in predicting 
cichlid radiation. 
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Supplementary Figure 1| Phylogeny of African cichlid �shes. The topology here is the best maximum likelihood topology from a full RAxML search. 
Numbers on nodes are bootstrap values from 100 rounds of bootstrapping.
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SUPPLEMENTARY FIGURES 
 
Supplementary Figure 1| Phylogeny of African cichlid fishes. The topology here is the best maximum likelihood 
topology from a full RAxML search. 
Numbers on nodes are bootstrap values from 100 rounds of bootstrapping. 
 
(see separate SI file)
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Numbers on nodes are bootstrap values from 100 rounds of bootstrapping. 
 
(see separate SI file)
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