
Proc. R. Soc. B (2011) 278, 58–66

 on July 6, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
* Autho

Electron
1098/rsp

doi:10.1098/rspb.2010.0925

Published online 4 August 2010

Received
Accepted
Rapid parallel adaptive radiations from a
single hybridogenic ancestral population
Alan G. Hudson1,2,*, Pascal Vonlanthen1,2 and Ole Seehausen1,2

1Division of Aquatic Ecology & Macroevolution, Institute of Ecology and Evolution, University of Bern,

Baltzerstrasse 6, CH-3012 Bern, Switzerland
2EAWAG Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution,

Seestrasse 79, CH-6047 Kastanienbaum, Switzerland

The Alpine lake whitefish (Coregonus lavaretus) species complex is a classic example of a recent radiation,

associated with colonization of the Alpine lakes following the glacial retreat (less than 15 kyr BP). They

have formed a unique array of endemic lake flocks, each with one to six described sympatric species differ-

ing in morphology, diet and reproductive ecology. Here, we present a genomic investigation of the

relationships between and within the lake flocks. Comparing the signal between over 1000 AFLP loci

and mitochondrial control region sequence data, we use phylogenetic tree-based and population genetic

methods to reconstruct the phylogenetic history of the group and to delineate the principal centres of gen-

etic diversity within the radiation. We find significant cytonuclear discordance showing that the

genomically monophyletic Alpine whitefish clade arose from a hybrid swarm of at least two glacial refugial

lineages. Within this radiation, we find seven extant genetic clusters centred on seven lake systems. Most

interestingly, we find evidence of sympatric speciation within and parallel evolution of equivalent pheno-

types among these lake systems. However, we also find the genetic signature of human-mediated gene

flow and diversity loss within many lakes, highlighting the fragility of recent radiations.

Keywords: sympatric speciation; postglacial radiation; cytonuclear discordance; AFLPs;

Coregonus; parallel evolution
1. INTRODUCTION
As human-driven environmental change and species loss

gathers pace, understanding how species diversity evolves

and how it is genetically and ecologically structured

becomes critical. The process of adaptive radiation,

which explicitly links environmental heterogeneity with

ecological diversification and speciation, potentially pro-

vides crucial insights into these questions [1,2]. As

populations exploit novel niches, divergent selection

drives adaptive divergence and genetic differentiation.

Ecologically similar but spatially isolated environments

will exert similar selection pressures on the diverging

populations, and many adaptive radiations show repeated

occurrences of specific ecotypes associated with specific

niches. These replicated natural experiments allow testing

of hypotheses regarding the drivers of diversification.

Young adaptive radiations, where intrinsic post-zygotic

reproductive isolation between the constituent taxa is

incomplete, provide particularly excellent model systems

because the processes leading to speciation are not yet

obscured [3].

Many early phylogenetic studies of young adaptive

radiations recovered monophyletic gene trees (e.g.

[4,5]). This was interpreted as evidence for high rates of

diversification from a single ancestral lineage. Many of

these systems have been reanalysed with multi-locus

nuclear markers and in several cases there is marked
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disagreement revealed between these and earlier cyto-

plasmic gene studies. While phylogenetic conflict may

be due to a lack of lineage sorting, there are a number

of studies where introgressive hybridization between puta-

tive founding taxa [6–8] or between taxa within an

adaptive radiation [9–11] is the more parsimonious

explanation. At the same time, novel phenotypes and

adaptations arising within adaptive radiations, have in

several cases been shown to be of hybridogenic origin

[12,13]. Interspecific gene flow increases or replenishes

standing genetic variation for divergent natural and

sexual selection to work with. Also introgression and

recombination could overcome constraints caused by gen-

etic covariances between traits, opening the way for new

evolutionary trajectories. Thus, the interaction of gene

flow and selection could fuel the functional breadth,

tempo and duration of adaptive radiations [9,14]. Phylo-

genetic trees have also been used extensively in testing the

hypothesis of sympatric speciation [3,15]. However, the

many cases of discordant phylogenetic signals between

different genes or genomic compartments suggest that

biogeographically complex models of speciation maybe

more likely [14,16]. Frequently, an initial period of allo-

patric isolation may be followed by secondary contact

with introgression. The outcome may vary from

reinforcement of pre-existing reproductive isolation, to

the formation of hybrid swarms, to hybrid speciation.

The extent of gene flow on secondary contact will deter-

mine genomic similarity among the resultant species, and

therefore the magnitude of phylogenetic discord.

The focus of this study, the Alpine whitefish (Coregonus

sp.) radiation, is native to approximately 40 lakes in three
This journal is q 2010 The Royal Society
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European drainages: the Rhine, Rhône and Danube [17].

Like other north temperate fish species complexes, colo-

nization of these lakes occurred following the glacial

retreat (12–20 kyr BP). Within the Alpine whitefish radi-

ation intralacustrine diversity varies from one to six

species. Coexisting species are genetically differentiated

[18], and phenotypically differentiated in traits linked to

feeding ecology: gill-raker number and density, growth

rate, shape and colour and also in traits linked to repro-

ductive ecology: time of spawning, location/depth of

spawning, spawning substrate and egg size, with the repli-

cated occurrences of corresponding ecotypes in different

lakes [19,20]. Previous phylogeographic studies of the

Coregonus lavaretus species complex have shown two

very divergent mitochondrial lineages present among the

Alpine whitefish [21,22]. However, sampling within the

Alpine radiation was taxonomically and geographically

limited. It was hence not known how these lineages

were structured between different species, recurrent eco-

types or lakes. A statistical association between ecotype

and cytoplasmic lineage would be evidence for an allopa-

tric phase in the origin of ecotypes. Microsatellite genetic

analysis of the Alpine radiation suggested that species

within single large or multiple, closely connected lakes

formed monophyletic species flocks, more consistent

with multiple origins for each ecotype and sympatric spe-

ciation or allopatric–sympatric speciation with high gene

flow on secondary contact [18,23]. However, the number

of loci was low and the monophyly of the entire radiation

has never been tested [18,24]. Therefore, in one of the

most species-diverse, young, vertebrate adaptive radi-

ations known, surprisingly little is known about the

geographical modes of origin.

We present the first integrated mitochondrial and

nuclear genetic study of the Alpine lake whitefish radi-

ation. We use mitochondrial DNA (mtDNA) to identify

the historical origins of the colonizing lineages. We then

compare the mtDNA phylogenetic signal with genomic

AFLP data, combining phylogenetic with population gen-

etic analyses to test two hypotheses: first, the genome-wide

monophyly of the Alpine radiation to ascertain whether

speciation has taken place within the modern geographical

distribution range of the radiation. Second, we character-

ize the principal structure of genetic diversity to test

whether lake flocks have evolved primarily in sympatry,

with the parallel evolution of ecotypes between lake flocks.
2. MATERIAL AND METHODS
(a) Sampling

The species, their geographical occurrence, their ecotype/

chronotype designation and the numbers of individuals gen-

otyped, can be found in electronic supplementary material,

table S1. Representative images of species/ecotypic diversity

can be found in electronic supplementary material, figure

S1. Populations were split into native and non-native

(found in lakes where original stocks were extinct or had

not previously occurred) according to Steinmann [20] and

Kottelat & Freyhof [17]. For ecotype/chronotype desig-

nation, species were grouped by mean gill-raker number

(feeding ecotype) and spawning season (reproductive

chronotype). Feeding ecotype categories were: (i) less

than 25 gill-rakers on the left, outer gill arch ¼ very low

gill-raker number (VLGR), (ii) 25–30 ¼ low gill-raker
Proc. R. Soc. B (2011)
(LGR), (iii) 31–35 ¼medium gill-raker (MGR), (iv) greater

than 35 ¼ high gill-raker (HGR). Reproductive chronotype

categories were: (i) spawning November–January (Winter)

and (ii) spawning July–September (Summer). Where

possible all specimens were collected on their respective

spawning grounds using overnight gill-netting. Additionally,

several species and populations of North European members

of the C. lavaretus complex, North American (NA) Coregonus

clupeaformis and European Coregonus albula were used in a

nested outgroup design.

(b) Molecular methods

One thousand, one hundred and seventy-eight basepairs of

mitochondrial control region was sequenced for 479 individuals

(forward primer L15 926; [25], reverse primer 12S; [26]).

Indels longer than one nucleotide were removed, as the

mutations could not be modelled [27]. AFLPs were analysed

for 274 individuals, nested within the mtDNA dataset. Fourteen

different EcoRI/MseI primer pairs with three selective bases

(ACG-CAC, ACT-CAC, ACC-CAG, ACG-CAG, ACT-

CAG, ACT-CAT, ACA-CGC, ACC-CGC, ACT-CGC, ACT-

CGG, ATG-CTC, ATG-CTG, AAG-CTT, ACG-CTT)

were amplified using a protocol modified from Vos et al. [28].

(c) Phylogenetic analysis

Unique mtDNA haplotypes were used for phylogenetic

reconstruction. Trees were created using different optimiz-

ation criteria: maximum parsimony (MP) in PAUP*

4.0b10 [29], Bayesian inference in MRBAYES 3.1 [30] and

maximum likelihood (ML) in PHYML [31]. Nucleotide

substitution models were obtained using MRMODELTEST 2.3

[32]. MP reconstructions treated single nucleotide gaps as

a fifth character and were bootstrap re-sampled 100 times.

Both individual-based and population-based neighbour-

joining (NJ) trees were reconstructed from AFLPs using

the program NEIGHBOR in the software package PHYLIP

3.67 [33]. Individual pairwise genetic distances were calcu-

lated from 1050 polymorphic AFLP loci using RESTDIST, in

PHYLIP with 1000 bootstrap replicates. Population trees

were constructed from Nei’s genetic distances between indi-

genous Alpine populations, calculated in AFLP-SURV 1.0

[34], based on 561 polymorphic AFLP loci data. To investi-

gate their biogeographical origins, this was repeated with the

addition of non-native Alpine populations (591 polymorphic

loci). The significance of differences between AFLP and

mtDNA tree topologies was evaluated using the SH test

[35], as implemented in PAUP*. Only mtDNA haplotypes

found in individuals in the AFLP dataset were included.

Two ML analyses of mtDNA sequence data were done,

one unconstrained, the other one constrained at the node

representing monophyly of the Alpine radiation clade.

(d) Population genetic analysis

AMOVAs were carried out independently on the mtDNA

and AFLP data in ARLEQUIN 3.11 [36]. For both markers,

four hierarchical, nested AMOVA models were specified

with variation partitioned among and within (i) feeding

ecotypes (VLGR, LGR, MGR, HGR), (ii) spawning chron-

otypes (Winter, Summer), (iii) groups of hydrologically

closely connected lakes (hereafter referred to as super-

lakes) and (iv) individual lakes. The super-lake and single

lake AMOVAs were calculated both with and without non-

native populations. The ecotype/chronotype AMOVAs were

only carried out with natural populations. Demographic

coalescent analyses (mismatch analyses) and neutrality tests

http://rspb.royalsocietypublishing.org/
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Figure 1. Mitochondrial D-loop phylogeographic results for the Alpine whitefish radiation. (a) Bayesian tree of D-loop haplo-
types. Clades C and N are coloured red and blue, respectively (following [22]). Numbers across branches refer to the statistical
support for nodes from different optimality criteria; (from top to bottom) Bayesian posterior probabilities, PHYML bootstrap
and MP bootstrap. (b) Geographical distribution of C and N clade D-loop haplotypes. Circles represent all the individuals

sampled from populations. Red and Blue colours represent the proportion (%) of individuals belonging to C and N clades,
respectively.
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were performed on the mtDNA data in ARLEQUIN. As diver-

gence occurred within the nonlinearity period of molecular

clock rates (less than 1–2 myr), standard Teleost and

Salmonid mtDNA mutation rates could not be applied

[37]. To overcome this, mtDNA sequence divergence was

compared with the similarly aged Lake Victoria Region

cichlid superflock [38]. Using as a calibration point, the

Lake Victoria region superflock origin, and comparing the

average number of mutational steps between its descendent

haplotype lineages with that between the European whitefish

haplotype lineages, obtained by mismatch analysis. The diver-

gence between the main European whitefish haplotype lineages

could then be tentatively dated. To investigate the number of

genetic clusters within the Alpine radiation as well as gene

flow between lakes, individual-based Bayesian population

assignments were carried out on the AFLP data in STRUCTURE

2.2 [39]. This was first done across the radiation, and then

repeated within each identified genetic cluster separately, to

identify additional finer-scale genetic structure.
3. RESULTS
(a) Mitochondrial phylogeography: polyphyly

and rapid expansion

From the 479 individuals sequenced, 63 different

mtDNA haplotypes were recovered (GenBank accession
Proc. R. Soc. B (2011)
numbers: HM634591–HM635074). In all the resulting

phylogenetic trees NA and European whitefish formed a

monophyletic group, consisting of three major clades

(figure 1a). The European whitefish (C. lavaretus com-

plex) contained two very divergent haplotype lineages,

and made a paraphyletic group with regard to the NA

whitefish (C. clupeaformis). The two major European

clades (from here on N for Northern, and C for Central

European) overlapped in their geographical distribution

and co-occurred within the same populations from

Switzerland to the Baltic Sea (figure 1b). N clade haplo-

types (blue in figure 1) predominate in the more

northerly and eastern populations in Scandinavia and

the Baltic Sea region, whereas C clade haplotypes (red)

had a higher frequency in the Alpine and North Sea

populations.

Phylogenetic relationships between the C. lavaretus

and C. clupeaformis clades varied slightly with the optim-

ality criterion used; model-based ML and Bayesian trees

showed relatively weak support (31% bootstrap support,

55% posterior probability, respectively) for a sister

group relationship between the European C clade and

the NA C. clupeaformis clade. The MP consensus tree

suggested a polytomy between the three major clades.

Little internal structure in the relationships between the

constituent haplotypes of either of the two European

http://rspb.royalsocietypublishing.org/


Figure 2. (Opposite.) AFLP phylogenies of the Alpine whitefish radiation. (a) Individual-based circular NJ tree. Numbers
represent bootstrap support (1000 replicates). (b) Population-based NJ tree of only Alpine radiation populations. Numbers
represent bootstrap support (1000 replicates). Numbers in parentheses show support for nodes recovered using indigenous

populations only. Numbers at branch tips refer to population identity: 1. Annecy, 2. Bourget, 3. Geneva, Neuchâtel
(4. C. palaea, 5. C. candidus), Biel (6. C. palaea, 7. C. confusus), 8. Joux, Thun (9. C. sp. ‘balchen’, 10. Coregonus alpinus,
11. C. albellus, 12. C. sp. ‘felchen’, 13. C. fatioi), Brienz (14. C. sp. ‘balchen’, 15. C. sp. ‘felchen’, 16. C. albellus), 17. Sempach,
18. Halwil, Lucerne (19. C. sp. ‘bodenbalchen’, 20. C. nobilis, 21. C. zugensis, 22. C. zugensis?), 23. Alpnach, 24. Sarnern, 25.
Lungern, 26. Zug, 27. Aegeri, Zuerich (28. C. duplex, 29. C. heglingus), Walen (30. C. duplex ‘river spawner’, 31. C. duplex, 32.

C. heglingus, 33. C. heglingus?), 34. Greiffen, 35. Pfaffiker, Constance (36. Coregonus arenicolus, 37. C. sp. ‘Alpenrhein’, 38. C.
sp. ‘weissfelchen’, 39. Coregonus macrophthalmus, 40. Coregonus wartmanni), 41. Ammer, 42. Woerth, 43. Chiem, 44. Kochel,
45. Starnberg, Maggiore (46. C. sp. ‘lavarello’, 47. C. sp. ‘bondella’), 48. Lugano. For both figures polygons represent ecotype
of sampled populations. Solid polygons, winter spawners; open, summer spawners. Circle, VLGR; triangle, LGR; diamond,

MGR; square, HGR; cross, C. nobilis (HGR, Summer). Colours refer to the lake/super-lake sampled: Neuchâtel-Biel
(pink), Thun-Brienz (orange), Lucerne (blue), Walen-Zuerich (green), Constance (red), Rhône drainage (light blue),
Danube drainage (yellow), Po drainage (purple) and Rhine lakes of uncertain affiliation (black).
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clades, suggests rapid, recent haplotypic diversification.

Also mismatch analyses and neutrality tests suggested

recent demographic expansion of each clade from small

populations (electronic supplementary material, table

S2). European mtDNA clades N and C were eight

mutations apart. Mean divergence between mtDNA

haplotypes of the cichlid fish superflock of the Lake

Victoria/Edward region occurred 4.2 mutations ago,

estimated to correspond to between 57 and 489 kyr BP

(mean 189 or 273 kyr depending on the calibration

model; [38]). Extrapolating from this, estimated diver-

gence dates between the two European C. lavaretus

clades were between 108 and 929 kyr BP.

AMOVAs of mtDNA data from native Alpine popu-

lations, revealed significant structuring of haplotypes

by both lake (17.15%, p , 0.001) and super-lake

(17.19%, p , 0.001), whereas species did not explain

any significant variation either in lake (1.58%, p ¼ 0.10)

or super-lake (1.93%, p ¼ 0.056) models. When non-

native populations were included, there was no significant

structuring of haplotypic variation either by lake

(10.45%, p ¼ 0.14) or super-lake (12.85%, p ¼ 0.06).

However, there then was significant structuring among

species within lakes and super-lakes (15.33%, p , 0.001

and 13.2%, p , 0.001, respectively). Finally, levels of

genetic variation structured among ecotypes or

chronotypes, were not significant (0%, p ¼ 0.32, 5.66%,

p ¼ 0.06, respectively).

(b) Phylogenomic analysis: monophyly

and speciation patterns

A total of 1050 variable AFLP loci were amplified for 274

individuals. Averaging across 30 repeated individuals

(11% of total), per locus levels of reproducibility, per

primer pair were high (greater than 95%). The resulting

individual-based NJ tree (figure 2a) strongly supported

genomic monophyly for the Alpine radiation (100% boot-

strap support). The closest relatives were the North

German C. lavaretus from Lake Drewitz (46%). The

most divergent group among the whitefish was C. clupea-

formis (99%). The SH test showed significant discordance

(p ¼ 0.001) between the topologies derived from the

mitochondrial sequences and from the nuclear genomes.

Within the Alpine radiation, AFLP genotypes clus-

tered into lake flocks and species in the individual-based

tree (figure 2a), however, re-sampling support for these

clades was low (less than 50%). Population-based AFLP

trees revealed similar, but better supported topologies
Proc. R. Soc. B (2011)
(figure 2b). Five major clades were found, centred on

geographically well-separated lakes or super-lakes, with

replicated occurrences of ecotypes between these.

Within super-lakes, populations of corresponding ecotype

from adjacent lakes are often each other’s closest relatives.

The five major clades recovered were the West

Swiss, Lucerne, Walen-Zuerich, Thun-Brienz and

Constance-Danube clades. In the West Swiss clade,

phenotypically similar LGR ecotype (Coregonus palaea)

populations from connected Biel and Neuchâtel were

monophyletic and grouped with Bourget whitefish from

the Rhône drainage, to the exclusion of sympatric MGR

ecotypes (Coregonus confusus and Coregonus candidus).

This West Swiss clade received a bootstrap support of

80 per cent. Within the Lucerne clade, the sympatric

species flock of Lake Lucerne was paraphyletic owing to

clustering of allopatric whitefish from Lake Sarnen (ca

5 km upstream) with the two HGR Coregonus zugensis

chronotypes. Basal support for the Lucerne clade was

68 per cent. The other species included in this clade are

the sympatric Coregonus nobilis and C. sp. ‘bodenbalchen’,

and parapatric Lake Alpnach C. sp. ‘alpnacherfelchen’.

The closely connected lakes Walen and Zuerich formed

a well-supported monophyletic clade (80%). The allopa-

tric populations of LGR ecotype (Coregonus duplex) were

monophyletic, as were the allopatric populations of

HGR ecotype (Coregonus heglingus). The majority of

endemic species of lakes Thun and Brienz formed the

fourth major monophyletic clade (39%). Again allopatric

populations of the same ecotype from sister lakes (i.e.

LGR C. sp. ‘balchen’ and HGR Coregonus albellus)

grouped together rather than with sympatric populations

of different ecotypes. However, the MGR Coregonus fatioi

from Lake Thun grouped basally to the clade formed by

species from Lake Constance and Danubian lakes (43%

bootstrap support). Populations from Lake Constance

and Danubian lakes together made the final major clade

(86%). Most populations from the Danubian lakes

grouped together as a single divergent lineage within the

Constance flock. Including non-native taxa often

decreased basal support for the major clades: Constance-

Danube (63% instead of 86%), Lucerne (47% instead of

68%) and West Swiss (69% instead of 80%), suggesting

some non-native taxa are of hybrid origin.

(c) Population genetic analysis

In the two geographical AMOVA models, slightly

higher levels of genetic variation were explained by

http://rspb.royalsocietypublishing.org/
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C. albellus, C. alpinus, C. sp. ‘felchen’, 6. Brienz (C. sp. ‘balchen’, C. sp. ‘felchen’, C. albellus), 7. Halwil, 8. Zuerich (C. heglin-
gus, C. duplex), 9. Walen (C. heglingus, C. duplex, C. duplex ‘river spawner’), 10. Zug, 11. Sempach, 12. Sarnern, 13. Alpnach,
14. Lucerne (C. zugensis, C. nobilis, C. sp. ‘bodenbalchen’) 15. Constance (C. macrophthalmus, C. wartmanni, C. sp.
‘Alpenrhein’, C. sp. ‘weissfelchen’, C. arenicolus), 16. Ammer (Coregonus bavaricus, Coregonus renke), 17. Woerth, 18.

Kochel, 19. Chiem. (b) STRUCTURE 2.2 results using only specific lake flock individuals. Photos represent phenotypes associated
with each sampled population. From left to right (i) Walen-Zuerich: Zuerich (C. duplex, C. heglingus), Walen (C. heglingus, C.
duplex). (ii) Lucerne: (C. nobilis, C. zugensis, C. sp. ‘bodenbalchen’). (iii) Thun-Brienz: Thun (C. alpinus, C. albellus, C. sp.
‘felchen’, C. sp. ‘balchen’, C. fatioi), Brienz (C. sp. ‘balchen’, C. sp. ‘felchen’, C. albellus).
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super-lake (9.30%, p , 0.001), than by single lake

(8.7%, p , 0.001). Lower, but significant amounts of

variation resided among species within super-lakes

(7.74%, p , 0.001) and lakes (7.96%, p , 0.001),

respectively. With non-native populations included,

the amount of genetic variation explained

by super-lake and lake was lower (7.6%, 7.1%; p ,

0.001). Concomitantly species explained more

(within super-lakes 8.5%, p , 0.001; within lakes

7.96%, p , 0.001). AMOVA models with reproductive

chronotype and feeding ecotype as grouping variables,

independent of lake or super-lake, showed low but sig-

nificant amounts of variation explained by chronotype

(3.12%, p , 0.001) and ecotype (1.05%, p , 0.05).

This was lower than the amount of variation explained

by species within chronotype/ecotype (14.78%,

15.08%; p , 0.001).
Proc. R. Soc. B (2011)
Bayesian individual assignment results were congru-

ent with the clades revealed in the population trees

(figure 3a). Using all Alpine radiation individuals, a K

of 8 had the highest likelihood. West Swiss lakes,

Thun-Brienz and Walen-Zuerich were identified as

cohesive, major genetic clusters. The Lucerne clade

was split into two clusters: one comprising LGR C. sp.

‘bodenbalchen’, the other HGR C. zugensis and C. nobi-

lis, together with allopatric HGR Sarnern. Lake Zug

whitefish formed a distinct genetic cluster. All Con-

stance individuals belonged to a single genetic cluster,

also many individuals from Danubian lakes showed

high probabilities of genetic input from this cluster, as

did Thun Coregonus fatio. However, within certain Danu-

bian populations (Woerth and Ammer) another, distinct

cluster predominated. Additional STRUCTURE analyses

within lake or super-lake clusters, revealed several

http://rspb.royalsocietypublishing.org/


64 A. G. Hudson et al. Hybridogenic radiation in whitefish

 on July 6, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
distinct genetic units within Thun-Brienz (five) and

Walen-Zuerich (two) (figure 3b). Again, within both sys-

tems, similar ecotypes from sister lakes tended to group

in the same genetic cluster.
4. DISCUSSION
We find in the Alpine lake whitefish radiation marked

cytonuclear genealogical discordance. mtDNA sequences

reveal the widespread prevalence of two highly divergent

clades within most lakes, neither of which is monophyletic

in the Alpine lakes. However, AFLP data strongly support

the genomic monophyly of the entire Alpine lake white-

fish radiation. This suggests that this species-rich

adaptive radiation arose in situ from an introgressed

ancestral population. AFLP nuclear data reveal seven dis-

tinct genetic clusters centred on geographically distinct

lakes and super-lake systems. These clusters again consti-

tute smaller scale genomically monophyletic species

flocks, nested within the larger radiation. This strongly

suggests the parallel origins of ecologically similar

species across lake systems and the prevalence of

sympatric speciation. This signal of monophyletic lake

and super-lake flocks persists despite genetic evidence

for historical stocking between lakes and introgressive

hybridization.

(a) Cytonuclear discordance, ancient hybridization

and adaptive radiation

The co-occurrence of two divergent mtDNA lineages in

the Alpine lake whitefish radiation is consistent with pre-

vious phylogeographic studies [21,22,40]. These studies

indicate the existence of two geographically distinct Euro-

pean glacial refugia for whitefish, probably located west of

the Ural Mountains in Russia (N clade) and, more tenta-

tively, near the mouth of the Rhine (C clade). Both

lineages also show strong signals of recent demographic

expansion towards the end of the last ice age. Within

native Alpine whitefish populations, the lack of structur-

ing of haplotypic variation at the species level or among

feeding and reproductive ecotypes suggests against the

pre-colonization origins of individual species and entire

ecotype categories now found in the Alpine radiation.

Thus it is probably that these two mitochondrial lineages

were thoroughly admixed within the whitefish stocks colo-

nizing the Alpine region, with some structuring of

haplotypic variation among lakes and super-lakes

through founder effects, mutation and genetic drift

post-colonization. The major alternative hypothesis is

the retention of ancestral mtDNA polymorphisms. The

lack of resolution in the branching order between the

largely sympatric lineages C and N and the NA

C. clupeaformis in MP trees, and indeed the placement

of the C clade as sister group to the NA clade in Bayesian

and ML trees, suggest a rapid divergence of all three

lineages from one another. The complete lineage sorting

between the American and either European clade then

makes retention of ancestral polymorphism a very

unlikely explanation for the total lack of lineage sorting

between the two European clades.

The AFLP signal of genomic monophyly for the entire

Alpine radiation indicates that diversification took place

in situ from a common ancestral stock. The ancient

genetic signature of introgression would be lost in the
Proc. R. Soc. B (2011)
nuclear data owing to recombination. This suggests that

the rich adaptive diversity of the Alpine lake whitefish

radiation has sprung from a genetically diverse, hybrido-

genic source population in the 15 kyr since the end of

the last glaciation, an astonishingly short evolutionary

time. Similar coincidence of cytonuclear discordance

and rapid diversification have been obtained from

other adaptive radiations [6,7]. The prevalence

of introgression, the probable resulting increase in

standing genetic variation and the potential for adaptive

novelty [13,16,41], has therefore seen the recent reapprai-

sal of introgression as a key mechanism in adaptive

radiation [9,14].
(b) Geographical modes of speciation

The consistent sister relationships between sympatric,

ecologically divergent species support, at least, a scenario

of coarse-grain [42] or mosaic [43] sympatric speciation.

The two major alternative explanations of the sympatric

co-occurrence of sister taxa are intralacustrine allopatric

speciation and regional-scale (between sister lake) allopa-

tric speciation with high gene flow on secondary contact.

The first hypothesis is very difficult to disprove [42].

However, within lakes, Alpine whitefish populations of

the same species show no significant isolation by distance

between spawning aggregates, making within-lake spatial

population subdivision unlikely to be important in specia-

tion ([44], B. Lundsgaard-Hansen & P. Vonlanthen, 2009

unpublished data). Regional-scale allopatric speciation

would predict that individual species diverge genetically

and ecologically in geographically isolated water systems,

followed by reciprocal invasion and secondary contact.

Despite considerable gene flow at neutral loci between

such newly sympatric species, some heritable ecological

divergence could be maintained by natural selection on

divergent phenotypes, preserving genomic islands of

differentiation between now sympatric species [45].

This scenario is difficult to distinguish from sympatric

speciation from a hybrid swarm. Both models predict

the shared identity of alleles brought to or maintained

in dominance by selection in similar ecotypes belonging

to different lake flocks. Given the recent common origin

of the Alpine radiation, parallel trends in genetic diver-

gence are perhaps probably as similar pools of standing

genetic variation are acted on by natural selection in simi-

lar lacustrine environments [46]. Therefore, instead of

allopatric speciation, this could indicate the same geno-

mic underpinning of traits leading to reproductive

isolation and therefore parallel speciation among ecotypes

[47]. Indeed AMOVAs indicate low but significant

amounts of genetic variation are explained by ecotype

and chronotype and further research is being currently

carried out to identify and quantify genomic regions

under selection. The most conclusive way to rule out

regional-scale allopatric speciation followed by gene flow

on secondary contact is by showing insufficient numbers

of potential refugia to produce the current sympatric

species diversity, making the sympatric origin of species

diversity most parsimonious. At least within the Lucerne

and the Thun-Brienz lake flocks, the high number of co-

existing species (at least three and five, respectively) make

between lake allopatric speciation unlikely. Therefore

while sympatric speciation is considered rare in nature
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[15], we identify at least two well-supported putative

examples within the Alpine whitefish radiation.

Interestingly in different lakes within super-lake sys-

tems, ecomorphologically similar populations from sister

lakes are often more closely related to each other than

ecologically different species from the same lake. As

some of these sister lakes separated relatively early after

the initial formation of the super-lakes, this suggests spe-

ciation was very rapid, having progressed, by the time the

lakes separated, to a stage that the genomic identity of the

species was maintained.
(c) Anthropogenic impacts on diversity

Given the evolutionary youth of the Alpine whitefish radi-

ation, a history of fish stocking and recent major habitat

modification through organic pollution, the probability

of anthropogenically increased levels of gene flow between

and within species flocks is high. We find evidence for

partial introgression from non-native lineages in certain

lakes (e.g. Thun C. fatioi, most Danubian Lakes). We

also find evidence for a loss of species genetic distinctive-

ness in those lakes that experienced the most severe

anthropogenic eutrophication in the recent past (Con-

stance, Neuchâtel, Biel). These lakes lack genetically

well-differentiated species, in strong contrast with what

historical data imply [20,48]. Overall this suggests that

like in other young adaptive radiations [49,50], while spe-

ciation has been rapid, the susceptibility of mechanisms

structuring species diversity to human-mediated environ-

mental change means that extinction through speciation

reversal is much faster [51].
5. CONCLUSIONS
Cytonuclear discordance between genetic markers reveals

that from a genetically enriched hybridogenic ancestral

population, a genomically monophyletic Alpine whitefish

radiation arose in less than 15 kyr. Nested within it, are at

least five distinct adaptive radiations, each centred on a

large lake or system of closely connected lakes, with par-

allel origination of ecologically similar species. The

observation that sympatric species are, with few excep-

tions, each other’s closest relatives suggests that

speciation in geographical sympatry is plausible and

occurred multiple times in parallel in a short period of

time. The combination of phylogenetic and population

genetic methods revealed the genetic signature of anthro-

pogenic stocking of whitefish between lakes and suggested

the loss of genetic differentiation among sympatric

species, highlighting the vulnerability of recent adaptive

radiations to speciation reversal.
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