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    Chapter 17   

 Use of Qualitative Environmental and Phenotypic 
Variables in the Context of Allele Distribution Models: 
Detecting Signatures of Selection in the Genome 
of Lake Victoria Cichlids       

         Stéphane   Joost      ,    Michael   Kalbermatten   ,    Etienne   Bezault   , 
and    Ole   Seehausen      

  Abstract 

 When searching for loci possibly under selection in the genome, an alternative to population genetics theo-
retical models is to establish allele distribution models (ADM) for each locus to directly correlate allelic 
frequencies and environmental variables such as precipitation, temperature, or sun radiation. Such an 
approach implementing multiple logistic regression models in parallel was implemented within a comput-
ing program named  MATSAM . Recently, this application was improved in order to support qualitative envi-
ronmental predictors as well as to permit the identi fi cation of associations between genomic variation and 
individual phenotypes, allowing the detection of loci involved in the genetic architecture of polymorphic 
characters. Here, we present the corresponding methodological developments and compare the results 
produced by software implementing population genetics theoretical models ( DFDIST  and  BAYESCAN ) and 
ADM ( MATSAM ) in an empirical context to detect signatures of genomic divergence associated with specia-
tion in Lake Victoria cichlid  fi shes.  

  Key words:     Genome scans ,  Signature of selection ,  Genotype × phenotype association ,  Environmental 
variables ,  Logistic regression ,  Cichlid  fi shes ,  Seascape genetics    

 

 On the basis of data produced by genome scans, the main approach 
to identify loci under directional selection – or likely to be linked to 
genomic regions under directional selection – is to use population 
genetics theoretical models to detect outlier molecular markers 
showing a larger genetic differentiation than expected under the 
neutral hypothesis  (  1–  3  ) . 

  1.  Introduction
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 An alternative is to establish allele distribution models (ADM) 
for each examined locus to directly correlate allelic frequencies 
with the variation of explanatory variables of interest (e.g., envi-
ronmental predictors such as precipitation, temperature, sun radia-
tion, etc.)  (  4,   5  ) . In this case, the geographic coordinates (spatial 
variables) of sampled individuals are used to link molecular data 
(presence or absence of a given allele at a genetic marker) with 
existing environmental variables (value of an environmental vari-
able at the location where individuals were sampled). Of course, 
environmental variables can also be directly recorded with sensors 
in the  fi eld. 

 Mitton et al.  (  6  )   fi rst had the idea to correlate the frequency of 
alleles with an environmental variable (elevation) to look for a signature 
of selection in ponderosa pine. They detected signi fi cant associa-
tion between gene frequencies and slopes of different aspects. In 
another paper also dedicated to ponderosa pine, Mitton et al.  (  7  )  
discovered that excess of heterozygosity was associated with xeric 
habitats. Then, Stutz and Mitton  (  8  )  applied the same approach to 
Engelmann spruce and showed that natural selection was varying 
with soil moisture. At the beginning of the 2000s, Joshi et al.  (  9  )  
and Skøt et al.  (  10  )  implemented such association studies on a 
broad scale to study adaptation in common plant species. But until 
then, the number of loci considered remained very low, for instance 
six AFLP loci analyzed together with temperature data in Skøt 
et al. in 2002  (  10  ) . A few years later, Joost  (  11  )  contrasted a higher 
number of loci (and alleles) with ecoclimatic variables in goat, frog, 
and brown bear. For the purpose of running many simultaneous 
univariate logistic regressions, an application named  MATSAM  was 
developed with  MATLAB  (The MathWorks Inc.)  (  12  ) . This software 
was successfully used to study adaptation in pine weevil and sheep 
 (  4  ) , in common frog  (  13  ) , in goat breeds  (  14  ) , in  fi sh  (  15  ) , and in 
plants  (  16,   17  ) . The results produced by  MATSAM  were compared 
and/or validated by the application of theoretical population 
genetics approaches to the same data sets in all publications 
mentioned above. 

 In this chapter, we describe the principles of  MATSAM , its limits, 
and additional features implemented in a new version released in 
summer 2010. Then a case study applied to Lake Victoria cichlids 
illustrates the novel functions.  

 

 In its  fi rst version,  MATSAM  computes multiple simultaneous univari-
ate logistic regressions to test for association between allelic 
 frequencies at marker loci and quantitative ecoclimatic variables 
 (  12  ) . To ensure the robustness of the method, two statistical tests 

  2.   MATSAM 
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(likelihood ratio G and Wald) assess the signi fi cance of coef fi cients 
calculated by the logistic regression function. 

 The molecular data sets used for analysis are in the form of 
matrices; each row of the matrix corresponds to a sampled indi-
vidual, while columns are organized according to the sampled 
individual’s geographic coordinates and contain binary informa-
tion (1 or 0) related to the genetic information observed at each 
genetic marker. Dominant biallelic markers (e.g., AFLPs) can be 
used directly as they provide binomial information. Codominant 
multiallelic markers (e.g., microsatellites) need to be encoded as 
described in  (  4  ) , and this is also the case for codominant biallelic 
markers (e.g., SNPs) (used in ref.  14  ) . 

 The initial  MATSAM  stand-alone application comes with two 
Excel macros developed in Visual Basic able to (a) automatically 
process the large amount of results provided and highlight the 
most signi fi cant associations and (b) draw graphs of the logistic 
functions (sigmoids) corresponding to any pair of genetic markers 
vs. environmental variables constituting the models. 

 The second version of  MATSAM  released in 2010 also includes an 
upgrade allowing qualitative predictors to be correlated with the 
presence/absence of alleles. Indeed, many environmental databases 
available contain nominal or ordinal data that cannot be processed 
as quantitative variables by  MATSAM  (e.g., CORINE land cover or 
FAO soil map). 

  For continuous quantitative predictors, logistic regression models 
 contain parameters (    bi  ) which represent the change in the response (    y  ) 
according to a change of the predictor (    x   ). For categorical predictors, 
parameters represent the different categories of a predictor.    The 
 predictor     x    is chosen to exclude or include a parameter for each obser-
vation. Hence, it is called a  design  or  dummy  variable. At least design 
variables need to be de fi ned for categories, groups, or classes. 
Consequently, the model will in any case be multivariate with at least 
    − 1m    parameters (to process     m    categories). 

 There are multiple ways to de fi ne design variables  (  18  ) . Presently, 
 MATSAM  implements three of them: the  reference , the  symmetrical , and 
the  independent  parametrization. The difference between these dif-
ferent types of parametrization is highly dependent on the conceptual 
interpretation that is made of the categories of predictors. 

  In this case, a group (or a category) always has to be set as the ref-
erence group. For groups, one is de fi ned as the reference and the 
other groups are simply an increase of the expected value com-
pared to the reference one. Each de fi ned combination of design 
parameters will re fl ect the expected value of     y   . Thus, the type of 
design variable has to be carefully chosen regarding what the 
 predictor conceptually represents (e.g., low–medium–high shrub 
density;  see  ref.  18  ) . 

  2.1.  Design Variables

  2.1.1.  Reference 
Design Variables
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 If the  fi rst group is used as a reference, then the practical imple-
mentation regarding the expected value gives:

     ( )=1 ,E Y m    

     ( )= +2 1,E Y m a    

     …    

     ( ) m a a −= + + +�1 1.m mE Y     

 Thus, the  fi rst group will represent the mean value of the 
groups, and all other groups will represent the mean ± a certain 
variation. Moreover, the predictor will have to be recoded accord-
ing to the following scheme: 

 Group 1:     [ ]…1 0 0    

 Group 2:     [ ]…1 1 0 0    

      …    

  Group  m :     [ ]…1 1    

 Finally, all predictor values af fi liated to group     m    will be recoded 
into a multivariate regression having an intercept and     bi   
(    = … −1, , 1i m   ) ( see  an example in Subheading  2.2 ).  

  Here, the groups are treated symmetrically. That is to say, it is nec-
essary to de fi ne a central group around which the symmetry is 
distributed:

     ( ) m=1 ,E Y    

     ( )= +2 1,E Y m a    

     
…

   

      ( )= − − −�1 .m uE Y m a a     

 We need     [ ]/ 2m    variables to express the relationships between 
the groups. The recoding scheme is of size     [ ]× / 2m m   : 

 Group 1:     [ ]…1 0 0    

 Group 2:     [ ]…1 1 0 0    

      …    

  Group  m :     [ ]− … −1 1 1    

 For example, let us imagine a categorical predictor composed 
of  fi ve groups with the following ordinal values: “very bad,” “bad,” 

  2.1.2.  Symmetrical 
Design Variables
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“average,” “good,” and “very good.” The “average” group is the 
central group in this case and the other groups are distributed around it:

     ( )= − −1 2,very badE Y m a a    

     ( )= − 1,badE Y m a    

     ( ) m= ,averageE Y
   

     ( ) m a= + 1,goodE Y
   

     ( ) m a a= + +1 2.very goodE Y
    

 And the corresponding recoding scheme is: 

 Group “very bad”     [ ]− −1 1 1    

 Group “bad”      [ ]−1 1 0    

 Group “average”     [ ]1 0 0    

 Group “good”     [ ]1 1 0    

 Group “very good”     [ ]1 1 1    

 Conceptually,     m   represents the overall average effect and     ai   
the group differences. Moreover, the sum of expected values has to    
be null  (  18  ) :

     ( ) ( ) ( )
( ) ( )
2 1 1 1 1 2 0.

very bad bad average

good very good

E Y E Y E Y

E Y E Y

⎡ ⎤ ⎡ ⎤⎡ ⎤− + − + −⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦

= − − − + + + =

m m m

m m

a a a a a a

     

  In this last parametrization scheme, each group is independent of 
the other     m    groups (corresponding to nominal qualitative vari-
ables). It means that there is no intercept in the regression model:

     ( )=1 1,E Y a    

     ( )=2 2,E Y a    

     
…

   

     ( )= .m mE Y a     

  2.1.3.  Independent 
Design Variables
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 Design variables enable such an implementation by de fi ning 
recoding values as follows: 

 Group 1:     [ ]…1 0 0    

 Group 2:     [ ]…0 1 0 0    

     …    

 Group  m :     [ ]…0 0 1    

 This recoding scheme is indeed similar to an identity matrix of 
size     ×m m   . Furthermore, as there is no intercept, the convergence 
of the model may become problematical. Indeed, a regression 
without an intercept becomes less stable (increase of the number of 
degrees of freedom of the model) and thus the maximum log-
likelihood might not converge.   

  We introduce here a small example to illustrate how design vari-
ables might be used. Let us consider a data set including a cate-
gorical predictor called “Location.” It is a nominal predictor 
characterizing the habitat location of animals. It is made of three 
classes: “Alps,” “Central Europe,” and “Southern Europe.” 
These location values are purely nominal and cannot be recoded 
into quantitative values or intervals. Furthermore, the class “Central 
Europe” will be used as a reference value. This consideration is 
completely conceptual, but it forces this predictor in a speci fi c way. 
It implies that all location values will be recoded into three new 
location predictors ( see  Table  1 ) computed automatically by  MATSAM . 
This clearly implies the computation of a multivariate regression: 

     = + + +1 1 2 2 3 3·Location ·Location ·Location .y b b b e     

 As “Location 1 ” shows a value 1 everywhere, it substitutes and 
becomes the model intercept.  

  Some limitations must be expressed regarding the use of design 
variables, in particular, the fact that if a predictor has many catego-
ries, the number of parameters in the model may be too high. This 
issue increases the number of degrees of freedom of the model and 
might result in over fi tting problems. Moreover, this over fi tting 

  2.2.  Example

  2.3.  Limitations

   Table 1 
  Example of the recoding of the location predictor   

 Location  Location 1   Location 2   Location 3  

 Central Europe  1  0  0 

 Southern Europe  1  1  0 

 Alps  1  1  1 
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produces unstable estimated standard error  (  19  ) , which is the con-
sequence of an almost singular variance matrix. This happens most 
of the time when the maximum log-likelihood does not converge. 

 To limit the effect caused by the problem mentioned above, 
one should always try to reduce as much as possible the number of 
required design variables. To this end, the type of recoding scheme 
has to be carefully chosen, and the type of recoding should always 
be the one requiring the lowest number of design variables as pos-
sible. As a result, one should  fi rst choose the  symmetrical  recoding. 
If not possible, the second choice should be the  reference  recoding 
scheme, and at last the  independent  one.  

  In addition to its capacity to process qualitative variables,  MATSAM  
stand-alone application is able to:

   (a)    Generate a graph for each association model (without any 
complementary Excel Macro)  

   (b)    Produce histograms to show the allelic frequency at each 
molecular marker for different values of environmental 
variables under investigation  

   (c)    Produce the  fi le containing the results with the names of 
genetic markers and of environmental variables de fi ned by 
the user to create the input matrix  

   (d)    Characterize the different types of errors that can be gen-
erated during the processing of the models (e.g., the 
model does not converge)  

   (e)    Produce a matrix containing pseudo-R 2  (Efron, MacFadden, 
Cox & Snell, and Nagelkerke/Cragg & Uhler), Akaike 
information criterion (AIC) and Bayesian information cri-
terion (BIC) goodness-of- fi t indicators for each model     

 Another important change is that the different parameters to 
con fi gure the application have to be indicated in a parameter  fi le. The 
main parameters de fi ne the type of qualitative environmental variables 
(nominal, ordinal) in order to generate the adequate design variables. 

 Several improvements of  MATSAM  are in progress and will mainly 
address spatial autocorrelation issues. They include, in particular, 
the processing and the mapping of Moran’s I, of local indicators of 
spatial autocorrelation (LISA), and of geographically weighted 
regression (GWR). Moran’s I and LISA are classical tools to mea-
sure spatial autocorrelation ( see    http://geoplan.asu.edu/anselin    ), 
while GWR is a family of regression models recently developed in 
which the  β  coef fi cients are allowed to vary spatially and therefore 
permit to reduce residuals ( see    http://ncg.nuim.ie/ncg/GWR/    ). 
The software will also permit to process multivariate models. 

 The logistic regression-based method developed here can be 
accurately used to detect statistical associations between genotype at 
any individual genomic locus with variations of environmental 
variables, in order to identify loci potentially playing a role in adaptation. 

  2.4.  Additional 
Improvements

http://geoplan.asu.edu/anselin
http://ncg.nuim.ie/ncg/GWR/
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But the same approach can also be used to identify associations 
between genomic variation and individual phenotypes, to ultimately 
help reveal genomic regions involved in the genetic architecture of 
polymorphic characters. In the case of phenotypic traits known to be 
subject to divergent selection among study populations, this method 
can then be used to discover genomic signatures of selection associ-
ated with each of these traits speci fi cally. The following case study 
applied to cichlid  fi shes will provide examples of both cases.   

 

 The Lake Victoria cichlid  fl ock is one of the most explosive exam-
ples of adaptive radiation, with more than 500 species having 
evolved during the last 15,000 years. The repetitive occurrence of 
the same adaptively important traits in unrelated taxa makes the 
Lake Victoria  fl ock an ideal model system for studying adaptive 
radiation in shape, ecology, and behavior. 

 Within the Lake Victoria cichlid radiation,  Pundamilia 
 pundamilia  and  Pundamilia nyererei  are two sympatric sister spe-
cies, inhabiting the shores of rocky islands and widely distributed 
in the lake  (  20  ) . They differ not only in male nuptial coloration but 
also in other ecological characters, as feeding ecology, depth distri-
bution, photic environment, visual pigment, and female mating 
preference for male nuptial coloration  (  21  ) . However, such diver-
gences appear only in near islands with high water transparency, 
whereas in near islands with low water transparency, genetic dif-
ferentiation is reduced or absent and intermediate color pheno-
types are common or even dominate  (  22–  24  )  (Fig.  1 ).  

 Along the Mwanza Gulf in the Southern part of the lake, the 
rocky islands show a continuous gradient of water clarity, from turbid 
in the South to clear in the North, associated with an increased 
 heterogeneity of the light environment. Following this gradient, 
populations of  Pundamilia  exhibit different stages of speciation, 
from a single polymorphic panmictic population to well-differenti-
ated sibling species, constituting a “speciation transect”  (  21  ) . 
Furthermore, pieces of evidence have been uncovered for divergent/
disruptive selection acting on male breeding color and opsin gene 
variants, as well as on eco-morphological traits  (  23,   24  ) . Finally, the 
global pattern of genetic differentiation among populations suggested 
a parallel divergence between divergent eco-morphs off the shore of 
each island along the Manza Gulf  (  23  ) . The example presented here 
is taken from a larger population genomic study aiming at identifying 
the dynamics of genomic differentiation along the gradient of specia-
tion in  Pundamilia   (  25  ) . 

  We studied four replicate pairs of divergent  Pundamilia  popula-
tions along this speciation transect using an AFLP genome-scan 

  3.  Signature 
of Genomic 
Divergence 
Associated with 
Speciation in Lake 
Victoria Cichlids

  3.1.  Method
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based on 234 individuals and 520 loci to identify (a) signatures of 
divergent selection as well as (b) associations between genomic loci 
and eco-morphological traits under selection. For this purpose, we 
used a logistic regression approach combined with  F  ST -outlier-
based methods ( see   Note 1 ). 

 The investigation of genotype × phenotype association using 
logistic regression was conducted with the method implemented in 
the second version of  MATSAM  v2 (  http://www.econogene.eu/soft-
ware/sam    ). In parallel, we ran two  F  ST -outliers detection methods, 
 DFDIST   (  2,   3  )  and  BAYESCAN   (  26  ) . To allow a comparison between 
the three methods, we conducted a similar analysis independently 
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  Fig. 1.    Distribution of the color phenotypes within the analyzed samples of the two divergent 
 Pundamilia  species at each of the island studied along the speciation transect.  Fitted curves  
are polynomial quadratic  fi ts. The increase in relative frequency of class 2 (intermediate 
color phenotypes) with the decrease of water transparency and the collapse of populations 
into unimodal intermediate phenotypic distribution is notable from the quadratic  fi ts.       

 

http://www.econogene.eu/software/sam
http://www.econogene.eu/software/sam
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with each of these software programs, and considered two distinct 
levels of detection for the divergent loci: one stringent corresponding 
to “signi fi cant” loci and the second–less conservative– corresponding 
to “marginally signi fi cant” loci ( see   Notes 2  and  3 ). Here, it is 
important to stress the fact that the determination of the chosen 
signi fi cance thresholds used to identify “signi fi cant” and “margin-
ally signi fi cant” loci for each method is not rigorous but based on 
what is generally admitted in the literature. These signi fi cance 
thresholds are summarized in Table  2  ( see   Note 3 ).  

  Pundamilia  males were randomly sampled off the shore of each 
island. Then individual male nuptial coloration was assessed on the 
basis of a 5-point color-scale system (Figs.  1  and  2 ), re fl ecting the 
increase of redness of the dorsal color pattern of the individual, rang-
ing from “0” for completely blue phenotype to “4” for completely 
red-dorsum phenotype  (  23,   27  ) . Analyses were then carried out 
based on either (a) the individual male “color-score” or (b) the color-
score grouping re fl ecting “species” morphotypes. First, the analysis 
based on individual male color-score allows  testing the relationship 
between precise morphotype and genetic variation (with individual-
based approach, i.e., “color” variable). Second, the de fi nition of diver-
gent “species” categories based on color-categories (i.e., individuals 
scored as 0 or 1 included in a “blue group” ( P. pundamilia ), indi-
viduals scored as 3 or 4 included in a “red group” ( P. nyererei ), and 
individuals scored as 2 included in an “intermediate group”) allows 
testing association between morphotype and genotype simultane-
ously with individual-based and population-based approaches (i.e., 
“species” variable, Fig.  2 ). In this second case, only the two extreme 
phenotype groups, representing divergent species, were used in pop-
ulation-based approaches to quantify the differentiation between 
divergent eco-morph populations, whereas the “intermediate group” 
was also considered for the individual-based approach ( see   Note 4 ).  

 We focused on the identi fi cation of signatures of divergent selec-
tion between the two  Pundamilia  species or eco-morphs. Analyses 
were then conducted (a) independently within each replicate pair of 
divergent sympatric populations (i.e., at the island level), to detect 
outlier loci within each of the four study islands; as well as (b) across 
all island populations grouped by color-morph (i.e., blue  P. punda-
millia  vs .  red  P. nyererei ), to detect global outliers over the entire 
study area. This led to  fi ve comparison tests in total. Such pattern of 
independent replicate divergences across closely related population-
pairs with a very low level of hierarchical genetic structure appears 
particularly suitable for the detection of signatures of selection within 
and across populations  (  28,   29  )  ( see   Note 5 ).  

  Over all  fi ve comparison tests, the combination of the two  F  ST -
outlier-based approaches allowed the identi fi cation of 49 loci poten-
tially under selection with at least one method (Table  2 ). Among 
them, all loci detected with B aye S can  were also detected with D fdist  
(i.e .,  15 loci, representing 31% of the detected outlier loci, Fig.  3 ), 

  3.2.   DFDIST  and 
 BAYESCAN  Results
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   Table 2 
  For the three analysis methods used in the  Pundamilia  genome-scan, comparison 
of (a) analysis parameters, (b) sample sets and grouping/tested variables, and (c) 
outlier loci detection results presented within and among methods, as well as the    
level of congruence between all pairs of methods   

 Methods   F  ST -outlier approach  Logistic regression 

 Software   DFDIST    BAYESCAN    MATSAM  

  Analysis parameters  

 Detection thresholds 

  Signi fi cant 

  Marginally signi fi cant 

  Additional detection 
parameters 

  P  < 0.01 

  P  < 0.05 

 Sequential background 
 F  ST  estimate 

 log 10 (BF)  ³  1 
(equivalent  P  < 0.24) 

 log 10 (BF)  ³  0.5 
(equivalent  P  < 0.09) 

  F  IS  was estimated 
from microsatellites 

  P  < 0.05 

  P  < 0.1 

 Detection with both 
Wald and G-tests 

  Sample set and test variables  

 - Comparison tests 

 - Sample sets 

 - Analyzed variables 

 Separately within each island and across all islands populations 
( n  = 5 tests in total) 

 The two groups of extreme morphotypes 
(excluding intermediate phenotypes) 

 Species (based on color phenotype) 

 All individuals 
(including 
intermediate) 

 Species and color 
(habitat, depth, 
morphometrics) 

  Results  

  Loci detection 

 - per method 
(signif. + marg. signif.) 

 49 
(17 + 32) 

 15
(8 + 7) 

 21
(11 + 10) 

 - with outlier methods  49 

 - with the three methods  55 

  Repeated detection 

 - between pairs 
of populations 

  2   1   1 

 - across populations  11   5   5 

 - between  DFDIST  
and  BAYESCAN  

 15 (31%) 

 - between  DFDIST  
and  MATSAM  

 15 (27%) 

 - between  BAYESCAN  
and  MATSAM  

 11 (44%) 
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  Fig. 3.    Relationship between heterozygosity (He) and locus-speci fi c  F  ST  between the diver-
gent  Pundamilia  populations computed using D fdist , conducted independently overall four 
islands with divergent populations grouped by color-morphs across islands ( a ) as well as 
separately within each island ( b – e ). The loci detected by each of the three analysis meth-
ods are indicated: for D fdist  outliers at  P  > 0.99 and  P  > 0.95 are represented in  gray  and 
 black , respectively; outlier loci detected by BayeScan with log 10 (BF)    0.05 are marked by 
a  circle ; and loci for which an association with a phenotypic variable has been detected 
using  MATSAM  are marked by a  cross  (for Kissenda Island, association with depth and 
morphometric variables are represented separately).       

  Fig. 2.    Representation of the different male nuptial color phenotypes occurring in the two 
divergent  Pundamilia  species along the transect of speciation of the Mwanza Gulf;  fi ve 
discrete color-categories have been described relative to the increase of redness of the 
pattern; then the  fi ve color-scores correspond to (0) totally blue phenotype (absence of 
yellow and red colors), (1) yellow coloration on the  fl ank (absence of red), (2) yellow  fl ank 
with the presence of red along the lateral line, (3) yellow  fl ank with a partially red dorsum, 
and (4) totally red dorsum. The color of the anal  fi n is not taken into account for the attribu-
tion of the color-score (for more details,  see  refs.  21  and  27  ).        
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re fl ecting the relatively lower stringency of D fdist , especially when 
the background genomic differentiation between population is low 
 (  26,   30,   31  ) . Then 7–12 loci were detected with either one or both 
methods at the island level and 21 loci across all islands (Table  3  and 
Fig.  3 ). Furthermore, 11 outlier loci were detected repeatedly within 
a speci fi c island as well as across all islands, and only two loci (i.e., 
2G225 and 1G117) were detected repeatedly in two different 
islands, representing, respectively, 22% and 4% of the detected out-
lier loci ( see  Table  2 ).    

  Logistic regression was conducted over the four study islands to 
identify associations between genomic loci and male nuptial color-
ation or species belonging. Additionally, within Kissenda Island, 
logistic regression was also conducted to test for genotypic associa-
tion with habitat depth and 12 morphological variables. 

 Morphometric characters were considered as strictly continuous 
variables, color and species variables were encoded and analyzed as 
categorical ordinal variables (symmetrical parametrization, i.e., distri-
bution of categories around the intermediate phenotype). For the 
purpose of methodological testing, habitat depth was analyzed either 
as a quantitative continuous or as a categorical variable (in the latter 
case with the reference set to 0 m). This allowed comparing the statis-
tical power of multivariate logistic regression  models - implied when 
using categorical variables ( see  Subheading  2.1 ) - with univariate 
models commonly used for continuous variables and theoretically 
expected to provide a higher detection power. Among all variables and 
comparison tests, the observation of a high proportion of detected 
associations with both univariate and multivariate models (61%) - 
while in 30% of the cases association was only detected in the context 
of univariate models and 9% in the context of multivariate models 
only - is in accordance with the slight reduction of detection power 
when using multivariate models. 

 Over the  fi ve comparison tests, associations were detected with 
21 loci at signi fi cant or marginally signi fi cant levels for at least one 
model (Table  2 ): 17 loci with species or color variables, two with 
depth, and  fi ve with morphometric characters ( see  Fig.  4 ).  

 Furthermore, even if the majority of the loci showed an associa-
tion with only one category of variable, three loci simultaneously 
exhibited an association with the color phenotype and a morphome-
tric trait, probably due to the statistic association of these characters in 
the populations. The absence of co-association with any other type of 
character for the two loci associated with habitat depth (and their lack 
of detection as outlier loci,  see  Fig.  3 ) suggests a relatively wider inde-
pendence of individual habitat adaptation from species belonging, 
compared to other phenotypic characters. 

 Zero to six loci were detected within each of the island-speci fi c 
analyses, and 12 loci were detected across islands (Table  3  and 
Fig.  3 ). Furthermore,  fi ve loci were detected repeatedly at the 

  3.3.   MATSAM  Results
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island level as well as across island comparison tests, and only one 
locus (i.e., 2G225) was detected repeatedly in two different island 
comparison tests, representing, respectively, 24% and 5% of the 
detected outlier loci.   

 When comparing the  F  ST -outlier and logistic regression approaches, 
a very high proportion of loci potentially under selection was also 
signi fi cantly associated with at least one phenotypic variable stud-
ied, representing 78.6% of the loci detected by both  F  ST -outlier 
methods. All genotype × phenotype associations detected here 
strictly involved phenotypic variables previously identi fi ed to be 
under divergent selection between the two  Pundamilia  species 
 (  24  ) . This supports the capacity of the logistic regression approach 
to (a) identify genomic loci under selection by association with 
characters targeted by selection, and then to (b) identify loci 
involved in the genetic architecture of these traits. 

 3.4.  Discussion

  Fig. 4.    Representation of different models of logistic regression to investigate association between locus genotype and 
phenotypic variables conducted with  MATSAM ; ( a – e ) test of association between genotype at locus 2G225 and individual 
color-score (considered as ordinal variable, ranging from 1 to 5) estimated independently within each island and across all 
islands; then within Kissenda Island populations, ( f ) test of association between genotype at locus 2G225 and a morpho-
metric variable divergent between eco-morphs, the head length (HL), and ( g – i ) test of association between genotype at 
three loci (2G225, 2B067, and 3N333) and habitat depth. Respective levels of signi fi cance of the association are indicated 
for each model (*** P  < 0.001, ** P  < 0.01, * P  < 0.05, applying Bonferroni correction;  n.s . nonsigni fi cant).       
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 This high proportion of genomic loci exhibiting both a signature 
of selection and association with divergent color-morph characters 
(73% of signi fi cant and marginally signi fi cant loci) suggests a pre-
dominant action of selection on male nuptial coloration in the diver-
gence between  P. pundamilia  and  P.nyererei , as further demonstrated 
by detailed population genomics study  (  25  ) . 

 

     1.    Aside from  F  ST -outlier-based methods, logistic regression can 
also be used to identify genomic signature of selection, when 
testing associations between genomic variation and traits 
identi fi ed previously as subjected to selection (e.g., by  F  ST / Q  ST  
analysis  (  32,   33  ) ). Rather than identifying the signature of 
selection based on the comparison of local (locus-speci fi c) dif-
ferentiation with background genomic differentiation, logistic 
regressions can identify genomic regions associated with the 
different targets of selection. 

 On condition that traits under selection were identi fi ed 
among study populations or species, this provides two sets of 
methods based on different assumptions, which can be used 
complementarily to identify signatures of selection. The con-
gruent detection with both methods can then be taken as a 
strong support factor (i.e., low probability to detect false posi-
tives by both methods).  

    2.    The difference in detection power between  F  ST -outlier methods 
and ADM (i.e., logistic regression) is primarily due to the fact 
that the former are population-based approaches, while the 
later are individual-based approaches. In  F  ST -outlier methods, 
the number of discrete populations sampled is particularly 
important to depict the global pattern of differentiation within 
the system, while the number of individuals (total or per pop-
ulation) will mostly affect the accuracy (i.e . , con fi dence inter-
val) of the differentiation estimators. On the other hand, in 
logistic regression, the detection power is mostly affected by 
the total number of individuals analyzed and their continuous 
distribution among the range of the values of the tested vari-
ables. Indeed, sampled individuals have to be continuously 
and homogeneously distributed over the study area, in order 
to (a) ensure a maximum environmental representativeness 
and maximize the chance to encompass contrasted environ-
ments and (b) avoid superimposition of similar associations 
( see   Note 5 ). Consequently, more accuracy and statistical 
power is expected in ADM when carrying out analysis on a 
global scale than on a regional or local one.  

  4.  Notes
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    3.    As signi fi cance is estimated from very different statistical tests 
in each of the three approaches used, it appears dif fi cult to 
determine objectively detection thresholds a priori for each 
method to allow similar stringency among them. In the pres-
ent study, we selected empirical signi fi cant thresholds generally 
used in similar studies. 

 The method implemented in  MATSAM  implies the realization 
of numerous logistic regression tests between all possible loci 
and explanatory variables. Such a design then requires correct-
ing the raw signi fi cance threshold for multiple testing. The 
Bonferroni correction was chosen due to its conservativeness, 
expected to minimize the false discovery rate. However, this 
correction stringency is also likely to reduce the true discovery 
rate, especially if numerous loci are analyzed. To compensate 
these two antagonist parameters, it is necessary to explore the 
results obtained for a large and systematic number of different 
signi fi cance thresholds and observe the number of signi fi cant 
associations well beyond the classic 95% and 99% signi fi cance 
thresholds, and also with lower signi fi cance thresholds (correc-
tion for multiple comparisons always included). Alternatively, 
other correction methods for multiple testing are available as 
referenced in  (  13  )  and could be tested in this context.  

    4.     F  ST -outlier methods and logistic regressions allow us to detect 
signatures of selection according to different types of “group-
ing variables.” On the one hand,  F  ST -outlier methods are based 
on interpopulation divergence measurements and require the 
analysis of “grouping variables” allowing a strict assignment of 
individuals to produce discrete populations (i.e., absence of 
intermediate individuals). On the other hand, logistic regres-
sion allows the analysis of “grouping variables” (i.e., predic-
tors), which could also have a continuous or even overlapping 
distribution among populations. This is re fl ected by two vari-
ables in our case study. First, considering the “species” vari-
able, individuals were assigned to three categories based on 
their nuptial coloration, the two extreme ones representing the 
strictly alternative morph/species groups, whereas the third 
(minority) one represented intermediate morphs. All three cat-
egories were then included in the analysis with logistic regres-
sion, while only the two extreme ones were included in the 
 F  ST -based analyses (i.e., the intermediate one being excluded). 
Second, the analysis of the “habitat depth” was only possible 
with the logistic regression approach, due to the fact that indi-
viduals show a fully continuous and a widely overlapping distri-
bution between the two species under study (i.e., it is impossible 
to cluster individuals into unambiguous discrete categories).  

    5.    The existence of a hierarchical genetic structure among stud-
ied populations can generate an increase of the false discovery 
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rate if it is not taken into account, as previously shown in the 
case of  F  ST -based approaches  (  34  ) . Similar patterns are 
expected with logistic regression when the variability along 
explanatory variables cannot be disentangled from a strong 
(hierarchical or not) population genetic structure. In our case 
study, we detected a lower genetic divergence between sym-
patric populations than between allopatric conspeci fi c ones. 
This genetic pattern of differentiation suggests independent 
replicated island-speci fi c divergence. In such a case, adaptive 
divergence and background genetic structure are not con-
founded even at the global level, and consequently permits to 
obtain reliable results.          
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